
 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

16-10-2014 

2. REPORT TYPE 

Final Report 

3. DATES COVERED (From - To) 

 04/23/2010-9/30/2013 

4. TITLE AND SUBTITLE 

Spectrally Adaptable Compressive Sensing Imaging System 

5a. CONTRACT NUMBER 

N00014-10-C-0199 

 

 

5b. GRANT NUMBER 

 

 

 

5c. PROGRAM ELEMENT NUMBER 

 

6. AUTHOR(S) 

Gonzalo Arce, Dennis Prather, Javier Garcia-Frias 

5d. PROJECT NUMBER 

 

 

 

 

 

5e. TASK NUMBER 

 

 

 

 

 

5f. WORK UNIT NUMBER 

 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

 

AND ADDRESS(ES) 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

University of Delaware 

210 Hullihen Hall 

Newark, DE 19716 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELEG33227310000 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

Office of Naval Research 

 

Linda Shipp - 703.696.8559 

Office of Naval Research 

(ONR) 

 

Linda Shipp - 703.696.8559 

 ONR 
Linda Shipp   

703-696-8559  11. SPONSOR/MONITOR’S REPORT  

linda.shipp@navy.mil        NUMBER(S) 

   

12. DISTRIBUTION / AVAILABILITY STATEMENT 

 

Approved for Public Release, distribution unlimited 

 

 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

Compressive Spectral Imaging is a revolutionary technique which senses the spatio-spectral information of a scene by using 
2D coded projections. The underlying spectral 3D data cube is then recovered using compressed sensing (CS) reconstruction 
algorithms which assume that the underlying hyperspectral images are sparse in some representation basis. The great 
advantage of CSI is that the required number of measurements needed for reconstruction is far less than that required by 
traditional scanning methods.  In practice, the Coded Aperture Snapshot Spectral Imaging (CASSI) systems efficiently 
implement CSI.  The compressive CASSI measurements are often modeled as the summation of coded and shifted versions of 
the spectral voxels of the underlying scene.  Thus, each CASSI measurement is a highly structured random projection of the 
underlying scene.  The structure of these projections is dictated by the CASSI optical system whose only varying components 
are the coded aperture entries.   The coded apertures are crucial inasmuch as they determine the quality of the image 
reconstruction as well as the required minimum number of FPA measurements. 

15. SUBJECT TERMS 

Imaging, Spectral, 3D, Optical 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 

Gonzalo Arce 

a. REPORT 

U 

b. ABSTRACT 

U 

c. THIS PAGE 

U 
 

UU 

 

104 

19b. TELEPHONE NUMBER (include area 

code) 

302-831-1493 

  Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



Final Technical Report of Contract ONR N00014-10-C-0199:

“Spectrally Adaptable Compressive Sensing Imaging System”

Submitted by:

Gonzalo R. Arce, PI

Dennis W. Prather and Javier Garcia-Frias

Department of Electrical and Computer Engineering

University of Delaware, Newark, DE, 19716

arce@ece.udel.edu (302) 831-1493

Prepared for:

Department of the Navy, Office of Naval Research,

875 North Randolph St., Suite 1425, Arlington, Virginia, 22203-1995

Ravi Athale, Program Director (ravindra.athale@navy.mil)

(703) 588-1916

May 2014



Contents

1 Compressive Spectral Imaging 16
1.1 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Sensing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Coded Aperture Optimization for Spectrally Agile Compressive Imaging 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Coded Aperture Characterization in CASSI . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Coded Aperture Agile Spectral Imaging System (CAASI) . . . . . . . . . . . . . . . . . . 32
2.4 Aperture Code Optimization in Multishot CAASI . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.1 Coded Aperture Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.2 Filter Bank Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.3 Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Rank Minimization Coded Aperture Design for Spectrally Selective Compressive
Imaging 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Matrix-Based CASSI Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Slice Model of the Spectral Data Cube . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Coded Aperture Effect Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Dispersive Element Effect Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4 Detector Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Optimal Codes for Spectral Band Selectivity . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Desired Compressive Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Coded Aperture Design for w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.3 Spectrally Selective Image Measurements . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.4 Design of the Pseudo-Random Components . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Optimal 2-Dimensional Coded Apertures . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Rank Minimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.2 Spectral Selectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Higher-Order Computational Model for Coded Aperture Spectral Imaging 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2



5 Compressive Hyperspectral Imaging Testbed 80
5.1 Coded Aperture Snapshot Spectral Imaging System . . . . . . . . . . . . . . . . . . . . . 80
5.2 Transfer Matrix of the CASSI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 DMD-based CASSI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Calibration of the CASSI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.7 Multi-shot CS Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Communications System 98
6.1 Development of non-linear mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Testbeds implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3



List of Figures

1.1 The hyperspectral signal in (a) is sparsified using the: . . . . . . . . . . . . . . . . . . . . 16
1.2 Sparse hyperspectral signal representation: basis comparison . . . . . . . . . . . . . . . . 17
1.3 Original hyperspectral signal. The first row contains the spectral bands 1- 4, and the

second row contains the spectral bands 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Sparse hyperspectral signal representation using the 1D Wavelet basis function. The spec-

tral bands in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the sparse represen-
tation coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Sparse hyperspectral signal representation using the 2D Wavelet basis function. The spec-
tral bands in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the sparse represen-
tation coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Sparse hyperspectral signal representation using the Kronecker basis function (DCT-2D
Wavelet). The spectral bands in (a) are represented using (b) 1% (c) 5%, and (d) 10% of
the sparse representation coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7 Original hyperspectral signal. The first row contains the spectral bands 1- 4, and the
second row contains the spectral bands 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.8 Sparse hyperspectral signal representation using the 1D Wavelet function. The spectral
bands in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the sparse representation
coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.9 Sparse hyperspectral signal representation using the 2D Wavelet function. The spectral
bands in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the sparse representation
coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.10 Sparse hyperspectral signal representation using the Kronecker (DCT-2D Wavelet) func-
tion. The spectral bands in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the
sparse representation coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.11 Compressive CASSI sensor components developed at Duke University. . . . . . . . . . . . 26
1.12 Illustration of the spectral data flow in CASSI. The qth slice of the data cube FFF with 11

spectral components is coded by a row of the code aperture t̃ and dispersed by the prism.
The detector captures the intensity y by integrating the coded light. . . . . . . . . . . . 26

2.1 The principles behind CASSI imaging. A 6 × 6 × 8 spectral data cube with 16 non zero
spectral components is coded by the coded aperture and dispersed by the prism. The
detector integrates the intensity of the resulting light wave. Each pixel at the detector
contains a coded linear combination of the spectral information from the respective data
cube slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 The CAASI system seen as a multi-channel filter bank. A set of measurements {gi} are
captured with a corresponding set of optimal aperture codes {w1, . . . ,wK}. The mapping
B reorders the K sets of measurements {gi} into the V sets {%%%i}. Each subset {%%%i} is
sufficient to independently reconstruct the desired spectral band subset {F̃λi

}. . . . . . . 29
2.3 Representation of the CASSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Model equations for a row measurement. A slice of the data cube fq impinges on a row of

the coded aperture ti = r ◦ wi to produce the coded slice WWWiRRRifq. The elements of the
coded slice are reordered into the matrix ΓΓΓi. The detector output giq = ΓΓΓiuL sums the

columns of ΓΓΓi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4



2.5 (a) The traditional model where the data cube f is processed with the highly sparse matrix
Hi. The coded aperture pattern is hidden in Hi; (b) new model of CAASI: f is first re-
ordered and expanded into the matrix XXX which is then processed by the weight matrix Wi

whose elements are the coded aperture patterns. . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Code aperture optimization as a filter design problem. The input is a row of the data cube

fs and the desired signal is f0. The filter coefficients (aperture codes w1,w2,. . .,wK) and the
coefficients bij are optimized by minimizing a cost function of the errors e1, e2, . . . , eM+L−1.
The error at given jth position at a row at the detector is the difference between the linear
combination of the measurements (%%%)j and (d)j . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 A slice of the data cube fs is modulated by the vector r and then reorganized into the
matrix X. The output at the detector is calculated as gi = Xwi. . . . . . . . . . . . . . 37

2.8 Performance evolution ξ∗ as a function of the iterations when the vectors (a) λλλ2 and (b)
λλλ4 in (2.34) are used as input of the GA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Optimal coded apertures w∗i for the vectors (a) λλλ1, (b) λλλ2, (c) λλλ3, and (d) λλλ4 indicated
in (2.34). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 An 128× 128 realization of the optimal coded apertures for the vectors (a) λλλ1, (b) λλλ2, (c)
λλλ3, (d) λλλ4 given in (2.34). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.11 A part of the matrix B∗ is shown. The lth column of B∗ represents the optimal coeffi-
cient to construct the measurement element (%%%∗)l. The vector λλλ4 is used as input of the
optimization algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.12 Reconstruction of the first spectral band of the 24 spectral band data cube. (a) Original;
reconstruction using (b) mod4 filter bank coded apertures, 4 shots; (c) mod12 filter bank
coded apertures, 12 shots; (d) mod24 filter bank coded apertures, 24 shots. . . . . . . . . 42

2.13 Reconstruction of the first spectral band of the 24 spectral band data cube. (a) Original;
(b) random coded aperture, 4 shots; (c) random coded aperture, 12 shots; and (d) random
coded aperture, 24 shots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.14 Mean PSNR for the reconstructed data cube as a function of the number of shots. The
techniques of random multishot and compressive modp filter bank are shown. . . . . . . 43

2.15 Reconstruction times for the full data cube as a function of the number of shots when is
used (a) pure random coded apertures (Random Multishot); (b) modp filter bank optimized
coded apertures (Filter Bank); and (c) modp filter bank coded apertures using a processor
for each subset of bands (Filter Bank Parallel). . . . . . . . . . . . . . . . . . . . . . . . 44

2.16 Reconstruction of the 1st and 18th spectral band of the 24 band data cube. (a) Original
1st band (b) original 18th band; reconstruction of the respective band using the vector λλλ4

in (2.34). (c), (d) 4 shots ; (e), (f) 8 shots. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.17 Reconstruction of the 1st and 18th spectral bands indicated in Fig. 2.16(a) and 2.16(b).

Reconstruction of the respective band using the vector λλλ4 in (2.34) for (c), (d) 12 shots;
(e), (f) 16 shots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Illustration of the spectral data flow in CASSI. The qth slice of the data cube FFF with 11
spectral components is coded by a row of the coded aperture t̃ and dispersed by the prism.
The detector captures the intensity y by integrating the coded light. . . . . . . . . . . . 49

3.2 The qth slice of the data cube FFF is represented by the matrix F. Each Fjk element is
pictorially represented as a small cube where the gray color indicates a zero value. . . . . 50

3.3 (a) A random coded aperture and (b) a spectrally selective optimal coded aperture for a
12 shot CASSI system. The corresponding FPA measurements are shown in (c) and (d).
The zoomed areas illustrate the wavelengths present at each pixel measurement where
the spectral selectivity of the optimal codes is clearly seen. The desired spectral profile
λλλ ∈ [461nm− 471nm, 641nm− 668nm] is illustrated in (e). . . . . . . . . . . . . . . . . 53

3.4 Three different versions of the V × L matrix Z as the value of p decreases. The elements
available to construct the set of optimal measurements d0, . . . ,dU are shown in white
squares representing elements containing only the desired bands. (a) The pseudorandom
component is not considered, p = 1. The pseudorandom component is a realization of a
Bernoulli variable with parameter (b) p = 0.6 and (c) p = 0.3. In this example: L = 8,
V = 280. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5



3.5 Optimization of the coded aperture process. Given the vector λλλ, the optimization reduces
the rank of the matrix Mt containing the set {wj ◦ rj}L−1

j=0 where the varying terms are
the vectors rj . The optimization is constrained to satisfy the condition given in (3.50). . 58

3.6 Given K ′ 2D optimized coded apertures, K ′ CASSI measurements Yαj
are made. These

measurements are reordering to construct the spectrally selective measurements Gj . The
GPSR algorithm reconstructs only the desired bands. N unidimensional optimal codes

{rαjwαj}K
′−1

j=0 are used to construct the 2D codes {Tαj}K
′−1

j=0 . . . . . . . . . . . . . . . . 60
3.7 4 spectral channels of 24 channels in the data cube used in the simulations are presented.

The complete data cube extends from 460nm to 680nm, and it has 24 spectral channels
and 512× 512 pixels of spatial resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 (a) Performance of the rank minimization algorithm versus the µ∗ parameter, (b) a typical
performance profile through iterations of the rank minimization algorithm. The iterations
where the algorithm restarting are indicated with squares. . . . . . . . . . . . . . . . . . 63

3.9 The resulting spectral data cubes are shown as they would be viewed by a Stingray F-033C
CCD Color Camera. The desired bands are depicted in (g). The original desired bands
are shown in (a). Reconstructed images by using : (b) 12 shots with random codes, (c)
9, (d) 12, and (e) 18 shots with optimized codes. An optimized coded aperture used to
reconstruct (c) is shown in (f). Zooming of (a) (original), (b) (random codes), and (d)
(optimal codes) are shown in (g), (h), and (i) respectively. . . . . . . . . . . . . . . . . . 64

3.10 Differences between the original and the reconstructed 3rd spectra channel (479nm) are
presented for (a) the reconstructed data cube in Fig. 3.9(b) (random codes) and (b) the
reconstructed data cube in Fig. 3.9(d) (optimized codes). A zoomed region of (a) and (b)
are presented in (c) and (d) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.11 The resulting spectral data cubes are shown as they would be viewed by a Stingray F-033C
CCD Color Camera. The desired bands are indicated in (e). The original desired bands
are shown in (a). Reconstructed images by using : (b) 12 shots with random codes, and
(c) 12 shots with optimized codes. An optimal coded aperture is illustrated in (d). . . . 65

4.1 Optical elements present in CASSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 CASSI integration model. A voxel of the data cube is coded by the aperture code, sheared

by the dispersive element with dispersion S(λk) and projected onto several pixels of the
detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 (Color online) (a) First order discretization model. A voxel impinges onto a single FPA
pixel detector; (b) higher order discretization model. A voxel impinges onto three FPA
pixels. Notice that the light dispersion path is on the (λ, x) axis (top view). . . . . . . . . 69

4.4 A voxel dispersed into the regions R0, R1, and R2 in each interval [λk λk+1]. These regions
determine the voxel fractions involved in the formation of the gm−1,n, gm,n and gm+1,n

detector pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Structure of the matrix H̃ for a N = M = 6, L = 5 datacube, when K = 3 for (a) CASSI

traditional model (H̃ ∈ R180×180); (b) Higher order CASSI model (H̃ ∈ R180×180). Extra
diagonal terms account for the inter-voxel interference. Notice that entries in (a) are either
0 or 1, while in (b) they vary in the interval [0, 1]. . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Spectral bands used in the simulations and their central wavelength. . . . . . . . . . . . 72
4.7 Reconstruction using the traditional CASSI model and the corresponding attained PSNR.

The average PSNR across the 8 bands is 22.3 dB. . . . . . . . . . . . . . . . . . . . . . . 73
4.8 Reconstruction using the higher order CASSI model and the corresponding attained PSNR.

The average PSNR across the 8 bands is 26.85 dB . . . . . . . . . . . . . . . . . . . . . . 74
4.9 Averaged PSNR of the reconstructed datacubes as function of the number of FPA shots.

The traditional and the higher order precision models are compared. . . . . . . . . . . . 74
4.10 (a) The CASSI testbed setup and its six optical elements: objective lens, DMD, imaging

lenses, band-pass filter, prism and CCD; (b) non-linear dispersion response of the Amici
prism between {450− 620}nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6



4.11 FPA measurement at 502 nm. The coded aperture (upper-left) is used in order to isolate
the effect of a single voxel impinging onto the FPA (upper right). A zoomed version
of a single FPA pixel shows the measured intensity taken into account for each of the
discretization models. The energy classified as noise and blur by the first order and the
higher order models, is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.12 Objects in scene used in the experimental comparison . . . . . . . . . . . . . . . . . . . . 76
4.13 Reconstruction of the 8 spectral bands using (a) the traditional CASSI model, and (b) the

proposed higher-order CASSI model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.14 Spectral signatures comparison from given points in Fig. 12. . . . . . . . . . . . . . . . . . 79

5.1 Schematic drawing of the CASSI system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Optical operations realized by the CASSI system. . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Transfer matrix of the CASSI system for an M = N = K = 3 image cube. . . . . . . . . . 83
5.4 Transfer matrix for an M ×N ×K image cube. . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 (a) Spatial/spectral image cube of the simulation target. (b) RGB image of the simulation

target. (c) Optical image of the simulation target. . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Spectral curves measured at the red spot and the green spot on the imaging target. . . . . 85
5.7 (a) A 256 × 256 CS measurement pattern. (b) Simulated CS measurement result for the

image cube shown in Fig. 5.5(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.8 (a) Reconstructed image cube. (b) RGB image of the reconstructed image cube. (c)

Optical image of the reconstructed image cube. . . . . . . . . . . . . . . . . . . . . . . . . 86
5.9 Spectral curves measured at the red spot and the green spot in the reconstructed image

cube (solid lines) and spectral curves measured at those two locations in the original image
cube (dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.10 Schematic drawing of the DMD-SSI system. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.11 (a) Zemax ray tracing model for the relay-dispersion arm of the DMD-SSI system. (b)

Optical design of the double-Amici prism. (c) Manufactured double-Amici prism and its
mechanical holder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.12 Spot diagram of the relay lens/double-Amici prism structure at 0 field angle. . . . . . . . 89
5.13 Experimental setup of the DMD-SSI system. . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.14 (a) Partial view of an ideal CS measurement pattern (32 × 32 pixels). (b) A noise-

contaminated CS measurement pattern generated by adding white noise to the pattern
shown in Fig. 5.14(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.15 (a) RGB image of the original image cube. (b) RGB image of the reconstructed image cube
when the ideal random pattern was used to implement the CS measurement process. (c)
RGB image of the reconstructed image cube when the noise-contaminated CS measurement
pattern was used. (d) Optical image of the original image cube. (e) Optical image of the
reconstructed image cube when the ideal CS measurement pattern was used. (f) Optical
image of the reconstructed image cube when the noise-contaminated CS measurement
pattern was used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.16 RGB and optical images reconstructed using the noise-contaminated CS measurement
pattern. In (a) and (c), the same amount of noise happened in the CS measurement
process was considered in the system transfer matrix. In (b) and (d), the noise was not
considered in the system transfer matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.17 Calibration setup for the DMD-SSI system. . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.18 (a) An ideal CS measurement pattern (128 × 128). (b) A monochromic image of the CS

measurement pattern captured by the DMD-SSI system at 612 nm. . . . . . . . . . . . . . 93
5.19 (a) Wavelength information of non-identical monochromic images captured in the calibra-

tion process. (b) Monochromic images captured at 453 nm (red pattern) and 671 nm (blue
pattern). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.20 (a) CCD image of the imaging target. (b) CS measurement result acquired by the DMD-
SSI system for the imaging target. (c) Reconstructed spatial/spectral image cube (fake
colors were added to enhance the visual perception of those spectral images). . . . . . . . 94

7



5.21 (a) Monochromic image of the CS measurement pattern captured at 587 nm. (b) CCD im-
age of the imaging target. (c) CS measurement result. (d) Reconstructed spatial/spectral
image cube of the imaging target (fake colors were added to enhance the visual perception). 95

5.22 (a) CCD image of the imaging target. (b) One of the CS measurement patterns used
in the MS-CS measurement experiment. (c) CS measurement result generated from our
experimental setup, when the pattern shown in Fig. 5.22(b) was implemented with the
DMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.23 Top row images: spectral images (channels 13-24 in the reconstructed image cube) re-
constructed with a SS-CS measurement process. Center row images: spectral images
reconstructed with a 6-shot MS-CS measurement process, implemented with shifted ran-
dom patterns. Bottom row images: spectral images reconstructed with a 6-shot MS-CS
measurement process, implemented with independent random patterns. . . . . . . . . . . 96

5.24 Colorful images synthesized using spectral channels 16 and 21 in the reconstructed image
cubes as the green and red color components in the RGB data format. (a) Colorful im-
age generated with the SS-CS measurement process. (b) Colorful image generated with
a 6-shot MS-CS measurement process, implemented with shifted random patterns. (c)
Colorful image generated with a 6-shot MS-CS measurement process, implemented with
independent random patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.25 (a) Reconstructed and reference spectral curves measured at point-1 on the pepper target.
(b) Reconstructed and reference spectral curves measured at point-2 on the pepper target. 97

6.1 Discrete-time continuous-amplitude communications system . . . . . . . . . . . . . . . . . 98
6.2 RF testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Notice the good match between the measurements and the Gaussian distribution . . . . . 100
6.4 Theoretical limit and performance of the proposed system for the transmissiosn of the

original measurements through an RF wireless channel. The system is evaluated through
simulations and through the testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8



List of Tables

2.1 Iterative Optimization of coded apertures {w∗1, . . . ,w∗K} and the optimal matrix B∗. . . . . . 38

3.1 CASSI Equations Model Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Spectral Selectivity Equations Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Iterative Stochastic Algorithm to solve (3.50). . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Comparison Between CASSI and Optimized CASSI . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Mean reconstruction PSNR in dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Weights Ri and their distribution across spectral bands . . . . . . . . . . . . . . . . . . . 76

9



Abstract

Compressive Spectral Imaging is a revolutionary technique which senses the spatio-spectral information
of a scene by using 2D coded projections. The underlying spectral 3D data cube is then recovered using
compressed sensing (CS) reconstruction algorithms which assume that the underlying hyperspectral im-
ages are sparse in some representation basis. The great advantage of CSI is that the required number of
measurements needed for reconstruction is far less than that required by traditional scanning methods.
In practice, the Coded Aperture Snapshot Spectral Imaging (CASSI) systems efficiently implement CSI.
The compressive CASSI measurements are often modeled as the summation of coded and shifted versions
of the spectral voxels of the underlying scene. Thus, each CASSI measurement is a highly structured
random projection of the underlying scene. The structure of these projections is dictated by the CASSI
optical system whose only varying components are the coded aperture entries. The coded apertures
are crucial inasmuch as they determine the quality of the image reconstruction as well as the required
minimum number of FPA measurements.

For almost a century, coded apertures have been designed by the realization that they are well con-
ditioned when used in least square estimation. In fact, commonly used coded apertures in CASSI in-
clude Hadamard matrices HN whose entries are (HN )ij ∈ {−1, 1}N×N , Hadamard S matrices SN where
SN = 1/2(1−HN ), cyclic S-matrices consisting of cyclic permutations of a single master codeword, and
Bernoulli random matrices. In this project, a new generation of coded apertures for compressive spectral
imaging are developed. The new coded apertures are designed such that they are not only optimal for
least square methods, but also for `1 recovery methods. We coin the new class of coded apertures as “`1-
coded apertures” since these are optimal under the criteria often used in the emerging techniques of CS.
Notably, the `1-coded apertures ensembles can be designed to obtain better quality in the reconstructed
images while minimizes the number of required 2D projections.

By designing the coded aperture patterns such that the sensing better satisfies the Restricted Isome-
try Property (RIP) of the CASSI sensing matrix. The project thus establishes the CASSI RIP constants
in terms of the statistical properties of the coded aperture entries such that the concentration of the
eigenvalues of the sub-matrices associate to the CASSI sensing matrix is maximized. More specifically,
the optimal `1-coded apertures are designed when their entries are drawn from: (a) Boolean random
variables, (b) binary random variables, (c) random signed and unsigned gray scale values. `1-coded
apertures can also be designed for specific applications such as compressive spectral selectivity. Spec-
tral imaging selectivity is sought in diverse applications since relevant information often lies within a
subset of spectral bands. Capturing and reconstructing all the spectral bands in the observed image
cube, to then throw away a large portion of this data is inefficient. First, the `1-selective coded aperture
optimization problem, in this case, is shown to be analogous to the optimization of a constrained mul-
tichannel filter bank. The optimal `1-selective coded apertures allow the decomposition of the CASSI
measurement into several periodic subsets, each having information from only a few selected spectral
bands. This first design approach, however, limits the selective spectral profiles to be periodic patterns.
Further, the minimum number of shots is restricted to the periodicity of the spectral pattern. In most
practical applications, however, the spectral profiles of interest are not periodic and the number of shots
is additionally restricted by the application at hand. A second optimization approach for coded aperture
spectral selectivity is then developed, where the `1-selective coded aperture design is generalized to a more
general and more effective mathematical framework for multi-shot CASSI, allowing the reconstruction of
arbitrary subset of bands, periodic or aperiodic, while minimizing the required number of shots. The new
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approach aims at the optimization of `1-selective coded aperture sets such that a group of compressive
spectral measurements is constructed, each with information from a specific subset of bands. A matrix
representation of CASSI is introduced permitting the optimization of spectrally selective coded aperture
sets. Further, each `1-selective coded aperture set forms a matrix such that rank minimization is used to
reduce the number of CASSI shots needed. Conditions for the code apertures are identified such that a
Restricted Isometry Property in the CASSI compressive measurements is satisfied with higher probability.

Finally, this project develops a higher order precision model for the optical sensing in CASSI that
includes a more accurate discretization of the underlying signals, leading to image reconstructions less
dependent on calibration. Further, the higher order model results in improved image quality reconstruc-
tion of the underlying scene than that achieved by the traditional model. The proposed higher precision
computational model is also more suitable for reconfigurable multi-frame CASSI systems where multi-
ple coded apertures are used sequentially to capture the hyperspectral scene. Several simulations and
experimental measurements demonstrate the benefits of the new discretization model.
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Introduction

Compressive Spectral Imaging

Imaging spectroscopy involves the sensing of a large amount of spatial information across a multitude
of wavelengths. Traditional imaging spectroscopy sensing techniques scan adjacent spatial zones of an
underlying spectral scene and merge the results to construct a spatio-spectral data cube. Push broom
spectral imaging sensors, for instance, capture the spectral data cube by using a dispersive element as a
prism or grating and one Focal Plane Array (FPA) measurement. These systems capture one snapshot
per spatial line of the scene [?] and the measures are concatenated to construct the spatio-spectral data
cube. Spectrometers based on optical band-pass filters scan a scene by tuning band-pass filters in wave-
length steps such that a whole spectral region is covered [?].

Although these traditional sensing techniques can be designed to measure the spectral information
with high resolution, they have the disadvantage that they require to scan a number of zones (spatial
lines, spectral bands) linearly in proportion to the desired spatial or spectral resolution. In contrast,
Compressive Spectral Imaging (CSI) senses 2D coded projections of the underlying scene such that the
number of required projections is far less than the linear scanning case. CSI exploits the fact that hyper-
spectral images are sparse in some basis representation [?]. More formally, suppose that a hyperspectral
signal FFF ∈ RN×N×L, or its vector representation fff ∈ RN ·N ·L, is S sparse on some basis ΨΨΨ, such that
fff = ΨΨΨθθθ can be approximated by a linear combination of S vectors from ΨΨΨ with S � (N ·N · L). Here,
N×N represents the spatial dimensions and L is the spectral depth of the image data cube. CSI allows fff
to be recovered from m random projections with high probability when m & S log(N ·N ·L)� (N ·N ·L).

Coded Aperture Snapshot Spectral Imager (CASSI) is a spectral image sensor that attains FPA com-
pressive measurements by using a coded aperture and a dispersive element. Indeed, CASSI has motivated
a great diversity of research directions in areas such as compressive spectral classification [?, ?], compres-
sive tomography [?], compressive holography [?], X-ray compressive imaging [?], compressive fluorescence
microscopy, [?], spatio-spectral compressive super-resolution [?, ?], and compressive Raman spectroscopy
[?, ?]. The projections measured in CASSI are given by y = Hfff , where H is an N(N+L−1)×(N ·N ·L)
matrix whose structure is determined by the coded apertures and the dispersive element.

For spectrally rich scenes or very detailed spatial scenes, a single shot CASSI measurement may not
provide a sufficient number of compressive measurements. Further, increasing the number of FPA random
projections yields to a less ill-posed problem, however, each additional snapshot requires more integration
time at the detector. Each additional shot uses a distinct coded aperture that remains fixed during the
integration time of the detector. This will rapidly increase the quality of image reconstruction. The
additional time required to sense the supplemental FPA projections can be impractical in applications
such as hyperspectral sensing at video rates [?]. Increasing the number of FPA projections also reduces
the compressive advantage of CSI. Minimizing the required number of FPA projections is thus a key issue
in CSI. The CASSI architecture has been recently modified to admit multiple snapshots, each admitting
a different coded aperture pattern. Multi shot CASSI can thus yield a less ill-posed inverse problem and
consequently improved signal recovering [?, ?]. The time-varying coded apertures can be implemented
using micro-piezo motors [?] or through the use of Digital Micromirror Devices [?, ?]. Denote the `th FPA
measurement as y` = H`fff where H` represents the effects of the `th coded aperture. The set of K FPA

measurements, each with a different coded aperture is then assembled as y =
[
(y0)T , . . . , (yK−1)T

]T
.
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The projections in CASSI can be alternatively expressed as y = HΨΨΨθθθ = Aθθθ where the matrix A = HΨΨΨ
is the sensing matrix. The underlying data cube is reconstructed as f̃ff = ΨΨΨ (minθθθ ||y −HΨΨΨθθθ||2 + τ ||θθθ||1)

where H =
[
(H0)T , . . . , (HK−1)T

]T
, θθθ is an S sparse representation of fff on the basis ΨΨΨ, and τ is a

regularization constant.

Coded Aperture Design in CASSI

A critical component in this inverse problem, is the structure of the sensing matrix A , HΨΨΨ as it ul-
timately determines the attainable quality of reconstruction. While the optical architecture in CASSI
partially imposes a well defined sparse structure to the sensing matrix A, the coded apertures used in
each measurement shot, ultimately determine the structure of A. The objective in CASSI is thus to
optimally design the set of `1-coded apertures so as to forge a structure on A that minimizes the number
of FPA snapshots while attaining the highest quality reconstruction. To this end, this project explores
the interplay between the Restricted Isometry Property and the set of coded apertures used in CASSI.

The Restricted Isometry Property (RIP) characterizes the ”goodness” of a matrix in CS, and it is
used to develop many theorems in CS. It establishes the conditions necessary for A such that the `2
norm of the underlying 3D spectral image is approximately preserved under the transformation Aθθθ.
More precisely, the restricted isometry constant δs of the matrix A is the smallest constant such that
(1− δs)||θθθ||2 ≤ ||Aθθθ||2 ≤ ||θθθ||2(1 + δs) [?]. The RIP requires that all m× |T | column submatrices A|T | of
A are well conditioned for all |T | ≤ S. Indeed, the RIP imposes that all the eigenvalues of the matrices
AT
|T |A|T | are in the interval [1− δs , 1 + δs]. The probability of satisfying this condition is calculated

by estimating the statistical distribution of the maximum eigenvalue λmax of the matrices AT
|T |A|T | − I

where I is an identity matrix. The distribution of the maximum eigenvalue λmax is estimated using
the concentration of measure for random matrices developed in [?]. The RIP condition also implies a
stable recovery of the signal θθθ from the projections Aθθθ using an l1 optimization algorithm [?]. Fur-
thermore, the RIP can be used to determine bounds on the required number of measurements needed
for successful CS reconstruction. These bounds depend on the structure of the underlying sensing matrix.

The first approach to characterize the RIP in CASSI was given in [?], where it was assumed that the
RIP for the matrix A is satisfied for some constant δs, then conditions on the coded apertures were deter-
mined so that the RIP is better satisfied. These results, however, do not provide the explicit parameters
for the bounds needed in the RIP, such as the probability of error, or the bound on the minimum number
of FPA measurements for stable recovery. Results in [?] also do not exploit the RIP in the optimal design
of the coded apertures. In fact, commonly used coded apertures in CASSI include Hadamard matrices HN

whose entries are (HN )ij ∈ {−1, 1}N×N , Hadamard S matrices SN where SN = 1/2(1−HN ) [?], cyclic
S-matrices consisting of cyclic permutations of a single master codeword [?], and Bernoulli random ma-
trices [?, ?]. The use of these coded apertures in CASSI has been principally motivated by the realization
that they are well conditioned when used in least square estimation [?, ?]. However, these code designs
do not fully exploit the rich theory of CS. In particular, they do not exploit the RIP condition or the
concentration of measure of the respective random submatrices of A to define optimal coded aperture sets.

The set of optimal coded apertures under the criterion of euclidian and `1 distances are coined here as
`1 coded apertures. There are several types of `1 codes, boolean ( Hij ∈ {0, 1}), binary (Hij ∈ {−1, 1}),
grayscale (Hij ∈ { 0

K−1 ,
1

K−1 , . . . , 1} and Hij ∈ {−1, 1−(K−1)/2
(K−1)/2 , 2−(K−1)/2

(K−1)/2 , . . . , 1}), and other possible

combinations. The optimal `1-coded apertures are also designed for spectral selectivity. Spectral se-
lectivity is of interest in many applications, including wide-area airborne surveillance, remote sensing,
and tissue spectroscopy in medicine. The optimal spectral bands in airborne surveillance, for instance,
depend on atmospheric conditions, time of day, the targets of interest, and the background against which
the targets are viewed [?]. In these applications, the spectral signatures of interest live in a spectral band
subspace. Efforts placed on acquiring the entire spectral image cube, to then throw away a large portion
of this data is wasteful in many regards.

A first approach for spectral selectivity is developed when the selective spectral profiles are limited
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to periodic patterns and the minimum number of shots is restricted to the periodicity of the spectral
pattern. In most practical applications, however, the spectral profiles of interest are not periodic and the
number of shots is restricted by the application. Then a second approach is developed which establishes
a more general and more effective mathematical framework for multi-shot CASSI and the corresponding
algorithms for `1-selective coded aperture optimization that allow the reconstruction of arbitrary subset
of bands, periodic or aperiodic, whilst minimizing the required number of shots.

The organization of the document is as follows:

Chapter 1 describes the principal theoretical concepts involved in the project. The concept of spar-
sity is illustrated and the physical phenomenon in CASSI is presented. The techniques to recover the
underlying signal and the Restricted Isometry Property are also presented.

Chapter 2 presents the coded aperture design for spectral selectivity in CASSI. In many applications
selective spectral imaging is sought since relevant information often lies within a subset of spectral bands.
Capturing and reconstructing all the spectral bands in the observed image cube, to then throw away
a large portion of this data is inefficient. To this end, this chapter extends the concept of CASSI to a
system admitting multiple shot measurements which leads not only to higher quality of reconstruction,
but also to spectrally selective imaging when the sequence of code aperture patterns is optimized. The
coded aperture optimization problem is shown to be analogous to the optimization of a constrained mul-
tichannel filter bank. The optimal coded apertures allow the decomposition of the CASSI measurement
into several subsets, each having information from only a few periodical selected spectral bands. The rich
theory of compressive sensing is used to effectively reconstruct the spectral bands of interest from the
measurements. A number of simulations are developed to illustrate the spectral imaging characteristics
attained by optimal coded aperture. This chapter limits the spectral desired bands to periodical patterns,
one more generalized method is presented in Chapter 3.

Chapter 3 extends the selective coded apertures developed in Chapter 2 to admit periodical and
non-periodical desired spectral profiles. More specifically, a new coded aperture design framework for
multi-frame Code Aperture Snapshot Spectral Imaging (CASSI) system is presented. It aims at the op-
timization of coded aperture sets such that a group of compressive spectral measurements is constructed,
each with information from a specific subset of bands. A matrix representation of CASSI is introduced
permitting the optimization of spectrally selective coded aperture sets. Further, each coded aperture
set forms a matrix such that rank minimization is used to reduce the number of CASSI shots needed.
Conditions for the coded apertures are identified such that a Restricted Isometry Property in the CASSI
compressive measurements is satisfied with higher probability. Simulations show higher quality of spec-
tral image reconstruction than those attained by systems using Hadamard or random coded aperture sets.

Chapter 6 presents a more precise model for the phenomenon in CASSI. The compressive CASSI
measurements are often modeled as the summation of coded and shifted versions of the spectral voxels
of the underlying scene. This coarse approximation of the analog CASSI sensing phenomena is then
compensated by calibration preprocessing prior to signal reconstruction. This Chapter develops a high-
er order precision model for the optical sensing phenomenon in CASSI that includes a more accurate
discretization of the underlying signals, leading to image reconstructions less dependent on calibration.
Further, the higher order model results in improved image quality reconstruction of the underlying scene
than that achieved by the traditional model. The proposed higher precision computational model is also
more suitable for reconfigurable multi-frame CASSI systems where multiple coded apertures are used
sequentially to capture the hyperspectral scene. Several simulations and experimental measurements
demonstrate the benefits of the new discretization model.

Chapter 5 discusses the implementation of the CS theory in building a testbed optical imaging system.
This testbed is suitable for hyperspectral imaging applications wherein both the spatial and spectral
information of the imaging scene are of interest. We demonstrate the feasibility of this testbed by
developing a Digital-Micromirror-Device-based Snapshot Spectral Imaging (DMD-SSI) system, which
implements CS measurement processes on the 3D spatial/spectral information of the imaging scene.
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Tens of spectral images can be reconstructed from the DMD-SSI system simultaneously without any
mechanical or temporal scanning processes.

Impact of Research and Contribution

The contributions of the project are mainly related with the optimal design of coded apertures in com-
pressive spectral imaging and its corresponding testbed implementation. The innovation of the code
design presented here is the design of the coded aperture based not only the `2 norm but also based on
the `1 distance. The coded apertures ensembles are calculated to obtain spectral selectivity, minimum
RIP constants, minimum number of shots. Further the codes are also designed to be used in applications
as compressive classification, spatial and spectral super-resolution. The optimization of the coded aper-
tures consists on to determine the spatial structure of the patterns to obtain the maximum quality in the
reconstructed images while it uses the minimum number of measurements. Additionally, a more precise
discretization model for CASSI is developed. The new model is more suitable for the calibration of the
coded apertures in multi-frame CASSI.
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Chapter 1

Compressive Spectral Imaging

1.1 Sparsity

Compressive sensing exploits the fact that most of the signals are sparse in some representation basis
ΨΨΨ. Hyperspectral images are sparsified using a separate basis for the spatial axes ΨΨΨ2D and other for
the spectral axis ΨΨΨ1D [?]. Commonly, the 2D wavelet transform is used to sparsify the images at a
specific wavelength. The spectral axis can be sparsified using a 1D Wavelength Transform or the Cosine
Transform. Thus, the hyperspectral image f is expressed as f = ΨΨΨ2D ⊗ΨΨΨ1Dθθθ where ⊗ is the Kronecker
product. Other basis can also be used as the Principal Component Vectors or pre-trained dictionaries,
however, these representations require previous knowledge about the underlying signals. Figures 1.1
and 1.2 illustrate the sparse representation coefficients for three different basis representation and two
different data bases. The first representation (Figures 1.1(b) and 1.2(b)) uses a 1D Wavelet Transform to
represent the data cubes, thus f = ΨΨΨ1Dθθθ . The second case (Figures 1.1(c) and 1.2(c)) uses a 2D Wavelet
Transform is used such that f = ΨΨΨ2Dθθθ. The third approach uses the Kronecker of the 2D wavelet basis
and the Cosine Transform. It can be observed clearly that the Kronecker basis produces the most sparse
representation (Figures 1.1(d) and 1.2(d)).

(a) Original datacube (b) 1D Wavelet basis (c) 2D Wavelet basis (d) Kronecker basis

Figure 1.1: Compression basis comparison. (b) 1D Wavelet, (c) 2D Wavelet, and (d) Kronecker (DCT-2D
Wavelet) basis representation.

To illustrate the effect of the sparse basis representation, Figures 1.4 - 1.10 depict approximations of
hyperspectral images using different levels of sparsity. These approximations are calculated by expressing
the underlying signal in a determined representation basis, then the estimated coefficients are sorted by
magnitude. A given percentage of the sorted coefficients are held and the remanning are set to zero.
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(a) Original datacube (b) 1D Wavelet basis (c) 2D Wavelet basis (d) Kronecker basis

Figure 1.2: Compression basis comparison. (a) Original scene. (b) 1D Wavelet. (c) 2D Wavelet. (d)
Kronecker (DCT-2D Wavelet)

The resulting coefficients are transformed back to the original space to generate the approximate signal.
Specifically, Figures 1.3 and 1.7 depicts two data cubes used to illustrate the sparsity concepts. Figures
1.4-Figures 1.6 illustrate the results for the first data cube, and Figures 1.8-Figures 1.10 shows the results
for the second data cube. The sparsity results are shown for the spectral bands 1, 3, 5 and 7 of the
original data cubes.

Figures 1.4(b)-(d) illustrate the approximations by holding only the 1, 5, and 10 percent of the samples
of the underlying signals in the first data cube. Figures 1.4(b)-(d) use the 1D Wavelet as representation
function. Figures 1.5(b)-(d) and Figures 1.6(b)-(d) illustrate the results for the 2D Wavelet and Kronecker
representation, respectively. Figures 1.8(b)-(d) illustrate the approximations by holding only the 1, 5,
and 10 percent of the samples of the signals in the second data cube. Again, Figures 1.8(b)-(d) use the 1D
Wavelet as representation function. Figures 1.9(b)-(d) and Figures 1.10(b)-(d) illustrate the results for
the 2D Wavelet and Kronecker representation, respectively. Notice as the images can be approximated
with high quality using only a small percentage of the original number of samples. Compressive spectral
imaging takes advantages of this sparsity phenomenon to solve the inverse problem of recovering a given
signal from its random projections.

1.2 Sensing Problem

The sensing physical phenomena in CASSI is strikingly simple, yet it adheres to the incoherence principles
required in CS. In its simplest form, CASSI measurements are realized optically by a coded aperture, a
dispersive element such as a prism, and a focal plane array detector [?, ?]. The coding is applied to the
(spatial-spectral) image source density f0(x; y;λ) by means of a coded aperture T (x; y) as realized by the
CASSI system depicted in Fig. 1.11, where (x; y) are the spatial coordinates and λ is the wavelength [?].
The resulting coded field f1(x; y;λ) is subsequently modified by a dispersive element before it impinges
onto the FPA detector. The compressive measurements across the FPA are realized by the integration
of the dispersed field f2(x; y;λ) over the detector’s spectral range sensitivity.

It was shown in [?, ?] that the discretized output at the detector follows

Yj` =
∑L−1
k=0 Fj(`+k)(k)Tj(`+k) + ωj` (1.1)

where Yj` is the intensity measured at the j, ` position of the detector whose dimensions areN×(N+L−1),
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Figure 1.3: Original hyperspectral signal. The first row contains the spectral bands 1- 4, and the second
row contains the spectral bands 5-8.

FFF is the discretized spectral data cube, L is the number of spectral bands, Tj` is the coded aperture,
and ωij` is the noise of the system. Assume that the band-pass filter of the instrument limits the spectral
components between λ1 and λ2. If the pixel width of the detector and of the coded aperture are both
equal to ∆, then the number of resolvable bands L is limited by L = αλ2−λ1

∆ where αλ is the dispersion

induced by the prism. The spectral resolution is limited by ∆
α . The horizontal and vertical spatial reso-

lutions are limited by ∆ and the number of spatially resolvable pixels of the underlying scene is N ×N .
The sensing mechanism is illustrated in Fig. 1.12 and further described as follows. Since the spectral

dispersion in the prism affects the field along one spatial dimension, a slice CASSI model is sufficient to
characterize the sensor. Figure 1.12 shows a slice F of the data cube FFF along the spectral plane and
the qth spatial dimension of dispersion. In this case (1.1) would represent the model of a slice of CASSI.
The slice is first coded in amplitude by the coded aperture T where the code is “block”or “unblock”. In
essence, when a “block”code aperture element is encountered, the energy along the entire row of the slice
is “punched out”. The coded field is then sheared along the spectral dimension as it transverse the prism
as illustrated in Fig. 1.12. Finally, the coded and dispersed field is “collapsed” in the spectral dimension
by integration in the FPA detector. Notice how the various optical phenomena realize compressive linear
projections onto the detector. To attain the 2D CASSI sensor model, one must then replicate the above
slice model for all the remaining slices of the cube, to a complete 2D detector.

For spectrally rich scenes or very detailed spatial scenes, a single shot FPA measurement is not
sufficient and additional shots are required, each with a distinct code aperture that remains fixed during
the integration time of the detector. Time-varying coded apertures can be realized by a spatial light
modulator (SLM) or by a lithographic mask actioned by a piezoelectric device [?, ?, ?]. It was also shown

in [?, ?] that the ensemble of say K << L FPA shots in 1-D vectorized form y =
[
yT0 , . . . ,y

T
K−1

]T
can

be rewritten in the standard form of an underdetermined system of linear equations

y = Aθθθ = HΨΨΨθθθ +ωωω (1.2)

where A = HΨΨΨ ∈ RKN2×LN2

is the CASSI sensing matrix, θθθ is a sparse representation of the data
cube in a 3-dimensional base ΨΨΨ, and ωωω represents the noise of the system. The matrix H in (1.2)
accounts for the effects of the coded aperture and the prism. The sensing matrix A thus couples H
with the representation basis ΨΨΨ. The coded aperture is considered binary and the dispersive element is
considered linear. In practice, it is necessary take into account the various optical artifacts and non-ideal
characteristic of the optical system. The underlying computational concepts are general and are thus, in
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(a) Original spectral bands (b) W1D (1%)

(c) W1D (5%) (d) W1D (10%)

Figure 1.4: Sparse hyperspectral signal representation using the 1D Wavelet basis function. The spectral
bands in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the sparse representation coefficients.
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(a) Original spectral bands (b) W2D (1%)

(c) W2D (5%) (d) W2D (10%)

Figure 1.5: Sparse hyperspectral signal representation using the 2D Wavelet basis function. The spectral
bands in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the sparse representation coefficients.
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(a) Original spectral bands (b) Kronecker (1%)

(c) Kronecker (5%) (d) Kronecker (10%)

Figure 1.6: Sparse hyperspectral signal representation using the Kronecker basis function (DCT-2D
Wavelet). The spectral bands in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the sparse
representation coefficients.
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(a) Original datacube

Figure 1.7: Original hyperspectral signal. The first row contains the spectral bands 1- 4, and the second
row contains the spectral bands 5-8.

principle, applicable to imaging with FPAs sensitive to any region of the visible and IR electromagnetic
spectrum.

1.3 Reconstruction

The underlying hyperspectral signal f ∈ RN2L must be recovered from the set of random projections
y = Af ∈ Rm where m << N2L. Thus, the signal recovery in CASSI entails solving an underdetermined
linear system of equations. More specifically, the signal f is estimated as

f̃ = ΨΨΨ

(
min
θθθ
||y −HΨΨΨθθθ||2 + τ ||θθθ||1

)
(1.3)

where H =
[
HT

0 , . . . ,H
T
K−1

]T
, θθθ is an S sparse representation of f on the basis ΨΨΨ, and τ is a regularization

constant. Solving (1.3) relies on the rich theory of CS which offers a number of efficient reconstruction al-
gorithms, including Matching Pursuit type algorithms [?] or interior-point methods such as GPSR [?, ?].
In the GPSR algorithm, for example, each iteration requires in the order of O(KN4L) operations. Hence,
the computational complexity scales rapidly with N and L. The probability of correct reconstruction
of the signal f is completely determined by the structure of the sensing matrix A = HΨΨΨ ∈ RKN2×LN2

where N2 is the size of the FPA sensor, L is the number of spectral bands, and K is the number of
measurement shots, with K << L. Increasing the number of FPA random projections yields to a less
ill-posed problem, however, each additional snapshot requires more integration time at the detector. The
additional time required to sense the supplemental FPA projections can be prohibited in applications
such as hyperspectral sensing at video rates [?]. Increasing the number of FPA projections also reduces
the compression advantage of CSI. Minimizing the required number of FPA projections is thus of inter-
est in CSI applications. The required number of projections in CASSI to correct image reconstruction
is determined by the Restricted Isometry Property (RIP) of the matrix A. The RIP property can be
modified by designing the set of coded aperture patterns. The optimal set of code aperture patterns is
designed such that the RIP property is satisfied using the minimum number of patterns.

A more appropriate alternative to increase the probability of correct reconstruction is by designing
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(a) Original spectral bands (b) W1D (1%)

(c) W1D (5%) (d) W1D (10%)

Figure 1.8: Sparse hyperspectral signal representation using the 1D Wavelet function. The spectral bands
in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the sparse representation coefficients.
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(a) Original spectral bands (b) W2D (1%)

(c) W2D (5%) (d) W2D (10%)

Figure 1.9: Sparse hyperspectral signal representation using the 2D Wavelet function. The spectral bands
in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the sparse representation coefficients.
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(a) Original spectral bands (b) Kronecker (1%)

(c) Kronecker (5%) (d) Kronecker (10%)

Figure 1.10: Sparse hyperspectral signal representation using the Kronecker (DCT-2D Wavelet) function.
The spectral bands in (a) are represented using (b) 1% (c) 5%, and (d) 10% of the sparse representation
coefficients.

25



Figure 1.11: Compressive CASSI sensor components developed at Duke University.

Figure 1.12: Illustration of the spectral data flow in CASSI. The qth slice of the data cube FFF with 11
spectral components is coded by a row of the code aperture t̃ and dispersed by the prism. The detector
captures the intensity y by integrating the coded light.

the structure of the sensing matrix A , HΨΨΨ as it ultimately determines the attainable quality of re-
construction. While the optical architecture in CASSI partially imposes a well defined sparse structure
to the sensing matrix A, the coded apertures used in each measurement shot, ultimately determine the
structure of A. The objective in CASSI is thus to optimally design the set of coded apertures so as to
forge a structure on A that minimizes the number of FPA snapshots while attaining the highest quality
reconstruction. To this end, this project explores the interplay between the Restricted Isometry Property
and the set of coded apertures used in CASSI.
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Chapter 2

Coded Aperture Optimization for
Spectrally Agile Compressive
Imaging

2.1 Introduction

Coded Aperture Snapshot Spectral Imaging (CASSI), first introduced in [?], is a remarkable imaging
architecture that allows capturing spectral imaging information of a 3D cube with just a single 2D mea-
surement of the coded and spectrally dispersed source field. The CASSI architecture has been studied
extensively in [?, ?]. It turns out that the coded measurements are mathematically equivalent to com-
pressive projections which are at the heart of the emerging field of compressive sensing (CS). In CS,
traditional sampling is replaced by measurements of inner products with random vectors. In CASSI, the
random projections are equivalent to spectrally dispersed coded fields that are integrated (projected) by
array detectors with broad spectral response. The spectral images are then reconstructed by solving an
inverse problem such as a linear program or a greedy pursuit in a basis where the under sampled signals
admit sparse representations. The key idea in CS reconstruction is the realization that most signals
encountered in practice are sparse in some domain and the theory of CS exploits such sparsity to dictate
that far fewer sampling resources than traditional approaches are needed [?, ?, ?].

Spectral image cubes are particularly well suited for sparse representation as images across different
wavelengths exhibit strong correlation [?, ?, ?]. More formally, suppose a hyperspectral signal F ∈
RN×M×L, or its vector representation f ∈ RN ·M ·L, is S sparse on some basis Ψ = Ψ1 ⊗ Ψ2 ⊗ Ψ3, such
that f = Ψθ can be approximated by a linear combination of S vectors from Ψ with S � (N ·M · L).
The operator ⊗ is the Kronecker product and Ψ is the Kronecker basis representation of f [?]. N ×M
represents the spatial dimensions and L is the spectral depth of the image cube. The theory of compressive
sensing shows that f can be recovered from m random projections with high probability when m .
S log(N ·M · L) � (N ·M · L). The dimension of the Kronecker basis set Ψ is RN ·M ·L×N ·M ·L such
that Ψ1 ∈ RN×N , Ψ2 ∈ RM×M and Ψ3 ∈ RL×L. The projections are given by g = HΨθ, where
H is an N(M + L − 1) × (N ·M · L) random measurement matrix with its rows incoherent with the
columns of Ψ. Commonly used random measurement matrices for CS are random Gaussian matrices
(Hij ∈ {N (0, 1/n)}), Rademacher matrices (Hij ∈ {±1/n1/2}) and partial Fourier matrices. The random
projection matrices in CASSI are realized by the coded aperture and the dispersive element. Figure 2.1
illustrates the principles behind CASSI, where a 6 × 6 × 8 spectral data cube with 16 non zero spectral
components is depicted. The spectral components are coded by a coded aperture where the white pixels
block the impinging light and black pixels permit light to pass through. A prism disperses the coded
light and a detector integrates the intensity of the wave light. The pixel measurements at the detector
are proportional to the linear combinations of the coded spectral components.

This chapter extends the CASSI spectral imaging concept to a spectral imaging architecture admitting
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Figure 2.1: The principles behind CASSI imaging. A 6 × 6 × 8 spectral data cube with 16 non zero
spectral components is coded by the coded aperture and dispersed by the prism. The detector integrates
the intensity of the resulting light wave. Each pixel at the detector contains a coded linear combination
of the spectral information from the respective data cube slice.

multiple measurement shots. The multiple measurements are attained as separate FPA measurements,
each with a distinct coded aperture that remains fixed during the integration time of the detector. There
are several advantages to multiple shots [?]. First, the number of compressive measurements in CASSI
may not meet the minimum needed for adequate reconstruction. Compressive sensing dictates that the
number of measurements must be in excess of S log(N ·M · L). Failure to collect a sufficient number of
measurements leads to a severely underdetermined inverse problem and to inadequate signal reconstruc-
tion. With each shot, CASSI invariably collects N ·M additional measurements regardless of the spectral
depth and sparsity of the source. For spectrally rich scenes or very detailed spatial scenes, a single shot
CASSI measurement may not provide a sufficient number of compressive measurements. Increasing the
number of measurement shots will multiply the number of measurements, thus rapidly overcoming such
limitations.

A second advantage to multiple shots is that spectral selectivity can be attained by coded aperture
design. Notably, the coded aperture patterns can be designed so as to maximize the information content
on a pre-specified subset of spectral bands of particular interest. Spectral selectivity is a characteristic
of interest in many applications, including wide-area airborne surveillance, remote sensing, and tissue
spectroscopy in medicine. The optimal spectral bands in airborne surveillance, for instance, depend on
atmospheric conditions, time of day, the targets of interest, and the background against which the targets
are viewed. The development of dynamically programable multi-spectral imaging sensors are of signifi-
cant interest, particularly for their use in small unmanned aerial vehicles. Similarly, spectrally selective
imaging is becoming widely used in medicine. Spectral imaging of the retina, for instance, offers a route to
non-invasive characterization of the biochemical and metabolic processes within the retina retinopathies
[?]. In the applications described above, and in many other applications, the spectral signatures of interest
live in a spectral band subspace. Efforts placed on acquiring the entire spectral image cube, to then throw
away a large portion of this data is wasteful in many regards. This Chapter focuses on overcoming these
inefficiencies, by developing an optimization framework for the design of coded apertures for spectrally
selective imaging.

In order to fully exploit the advantages of multishot coded apertures, this Chapter also develops
a new model describing the coded aperture optical system. The original CASSI model describes the
output of the system as a matrix operation acting on the input source field, where all the optical effects
are implicitly embedded in the matrix operation. The CASSI model derived here describes the output
of the system as a function of a “code-aperture vector” that explicitly acts on a “reordered” input
source. In particular, a vector representation of a slice of the data cube is re-ordered into a matrix
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Figure 2.2: The CAASI system seen as a multi-channel filter bank. A set of measurements {gi} are
captured with a corresponding set of optimal aperture codes {w1, . . . ,wK}. The mapping B reorders
the K sets of measurements {gi} into the V sets {%%%i}. Each subset {%%%i} is sufficient to independently
reconstruct the desired spectral band subset {F̃λi

}.

structure, implicitly accounting for the spectral shearing operator of the CASSI system. The reordering
operator, in turn, decouples the code-aperture effects of CASSI from the spectral shearing, thus allowing
the representation of the output of the CASSI system as a simple matrix multiplication of the reordered
input data with a vector whose elements are the coded aperture variables to be optimized. In this manner,
the coded aperture optimization problem is shown to be analogous to a multi-channel digital filter bank
optimization problem where the filter coefficients represent the aperture codes and, consequently, the
optimization is constrained to produce binary-valued outputs. The solution to the optimization problem
at hand is made feasible by the new CASSI system representation. Using the resultant optimal coefficients,
a filter bank decomposition of the data cube can be realized such that it is possible to assemble a reduced
set of compressive measurements which are sufficient to reconstruct a desired subset of spectral bands,
and at the same time attain higher signal to noise ratio. Figure 2.2 illustrates this concept where a
set of K measurements {gi} are taken with a corresponding K set of optimal aperture codes {wi}
where i indexes the ith measurement. The mapping B reorders the set of measurements {gi} into the
V ≤ K sets {%%%i} containing only information of the spectral bands given by λi. Each subset {%%%i} is
sufficient to independently reconstruct the desired spectral band subset {F̃λi

}. The new coded aperture
agile spectral imaging (CAASI) system described in this Chapter allows multiple measurement shots
and, consequently, it has the aforementioned advantages over CASSI. The new capabilities, however,
come at the expense of more complexity in the hardware implementation. Multishot measurements can
be attained by successively shifting, along the horizontal axis, the fixed coded aperture in CASSI. A
novel piezo-electrical implementation of this approach is described in [?, ?]. An approach more suitable
for dynamic selectivity in real-time is to implement the time-varying aperture codes on a spatial light
modulator [?, ?, ?, ?]. Device implementation, calibration, wavelength range of operation, and other
hardware considerations are critical but fall outside the scope of this Chapter. These will be considered
in depth in a separate publication. The methods developed here are mathematical in nature and thus are
applicable on any hardware platform capable of acquiring multiple shots, each with a distinct aperture
code pattern.

2.2 Coded Aperture Characterization in CASSI

The coded aperture single shot spectral imaging system is depicted in Fig. 2.3 [?]. The coding is realized
by the coded aperture T (x, y) as applied to the spatio-spectral density source f0(x, y;λ) where (x, y)
are the spatial coordinates and λ is the wavelength resulting in the coded field f1(x, y, λ). The coded
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Figure 2.3: Representation of the CASSI.

density is spectrally dispersed by a dispersive element before it impinges on the focal plane array (FPA)
as f2(x, y, λ),

f2(x, y, λ) =

∫ ∫
T (x′, y′)f0(x′, y′, λ)h(x′ − αλ− x, y′ − y)dx′dy′ (2.1)

where T (x′, y′) is the transmission function representing the coded aperture, h(x′ − αλ − x, y′ − y) is
the optical impulse response of the system, and αλ is the dispersion induced by the prism assuming a
linear dispersion. Each spectral slice of the data cube f0(x, y;λ) is thus spatially modulated by the coded
aperture and dispersed by the dispersive element[?]. The compressive measurements across the FPA are
realized by the integration of the field f2(x, y, λ) over the detector’s spectral range sensitivity. The source
f0(x′, y′, λ) can be written in discrete form as (Fk)nm where n and m index the spatial coordinates,
and k determines the kth spectral plane. Assuming that the band pass filter of the instrument limits the
spectral components between λ1 and λ2 and the side length of the square detector pixel is ∆d, the number
of resolvable bands L is limited by L = αλ2−λ1

∆d
. The spectral resolution is limited by ∆d

α . Additionally,
it is assumed that the side length of the coded aperture square pixel ∆c satisfies k∆c = ∆d, where k ≥ 1
is an integer. The horizontal and vertical spatial resolutions are thus limited by ∆d. The height N of
the resolvable data cube is limited by N = min( Uh

k∆c
, Vh

∆d
) where Uh and Vh are the vertical physical

dimensions of the coded aperture and the detector respectively. The width M of the resolvable data cube
is limited by M = min( Uw

k∆c
, Vw

∆d
− L + 1) where Uw and Vw are the horizontal physical dimensions of

the coded aperture and the detector respectively. Following the mathematical model in [?], the coding is
realized by an aperture pattern (T)nm.

The compressed sensing measurements at the focal plane array can be written in the following matrix
form:

(G)nm =

L∑
k=1

(Fk)n,m+k(T)n,m+k + (ωωω)n,m (2.2)

where ωωω represents white noise, L is the number of spectral bands, and n, m index the pixels on the
detector. A typical example of the measurement process using (2.2) is shown in Fig. 2.1. The expression
in (2.2) can be expressed as

g = Hf +ωωω = HΨθθθ +ωωω (2.3)

where g and f are vector representations of G and F, respectively [?]. These vector representations
will be described shortly. H is the projection matrix that takes into account the effects of the coded
aperture and the dispersive element. Ψ is a Kronecker basis representation, and θθθ is a sparse coefficient
vector representing f . The characteristics of H in relation to incoherence and the restricted isometry
property (RIP), needed for signal reconstruction in a set of undetermined system of linear equations are
studied in [?]. If the aperture code pattern is fixed and only one snap-shot is detected, the resultant
spectral imager is the so-called single disperser, or single-shot, CASSI architecture [?]. In this case,
the entire 3-D multispectral image cube is compressed into a single 2-D compressive image measure-
ment at the FPA. The spectral image cube f can be reconstructed by solving the optimization problem
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Figure 2.4: Model equations for a row measurement. A slice of the data cube fq impinges on a row of
the coded aperture ti = r ◦wi to produce the coded slice WWWiRRRifq. The elements of the coded slice are
reordered into the matrix ΓΓΓi. The detector output giq = ΓΓΓiuL sums the columns of ΓΓΓi.

f̂ = Ψ{argminθ′‖g −HΨθ′‖22 + τ‖θ′‖1} where τ > 0 is a regularization parameter that balances the con-
flicting tasks of minimizing the least square of the residuals while, at the same time, yielding a sparse
solution. Several algorithms exist in the compressive sensing literature to solve this inverse problem
[?, ?, ?, ?].

H in (2.3) is an N · (M + L − 1) × N ·M · L matrix mapping the vector f , which indexes the 3D
data cube, into the vector g. Note from (2.2) and (2.3) that the matrix H embeds both, the coded
aperture T and the shifting operation of the dispersive element. Since the aperture code is hidden in
H and since it is not directly observed in (2.2) and (2.3), its optimization is difficult using this CASSI
formulation. Given that this analysis only considers the dispersive and the coded aperture effects, the
matrix H is binary; however, due to non-linearity in the dispersive element, non ideal optical instruments
and misalignments between the detector pixels and the spatial light modulator, these matrices have real
values in practice [?]. For the purposes of this Chapter a binary H is used. Additionally, the model used
does not consider noise. The modifications on H to address the physical limitations of the optical system
can be readily done but omitted here in order to better illustrate the aperture code optimization problem.

Since the dispersive element shifts the propagating light along the horizontal dimension only, the
spectral coding in CASSI is independent from one row to another. Hence, it is possible to construct an
aperture code model for just one row of the measurement matrix, which is then replicated for all rows of
the detector. To this end, define the vector fq that indexes one slice of the data cube (Fk)nm when the
index n is fixed to q. More specifically,

(fq)(k−1)·M+m = (Fk)qm, for m = 1, . . . ,M k = 1, . . . , L. (2.4)

Note that the elements of fq are the only elements of the source f having an impact on the qth row of G.
Let the qth row of G be gq. The projection of fq into gq is then represented as

gq = Hqfq. (2.5)

for q = 1, . . . , N . Figure 2.4 illustrates the various vector representations in (2.4) and (2.5) of the
source data cube. Since the spectral coding along rows of G are mutually independent, the vectors gq,
can be arranged as in (2.3) where g and H are unfolded showing the mutual independence of the row
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measurements as
g︷ ︸︸ ︷

g1

...
gq
..
.

gN


=

H︷ ︸︸ ︷

H1 0 · · · 0

0
. . .

. . .
...

...
. . . Hq

. . .

0 · · · HN



f︷ ︸︸ ︷

f1
...
fq
..
.
fN


(2.6)

where the matrices 0 have (M +L−1)×M ·L zero elements, the NML-long vector f =
[
fT1 fT2 . . . fTN

]T
is the concatenation of the vectors fq in (2.4), and the vector g = [g1 g2 . . . gN ]

T
is the concatenation

of the row vectors gq representing the qth row at the detector. The matrix Hq represents the effect of
the dispersive element, the coded aperture, and the integration on the detector for the qth row of the
measurement matrix G. The Hq matrix is given by

Hq =



diag{(T)q,1, . . . , (T)q,M} 01×M · · · 01×M

01×M diag{(T)q,1, . . . , (T)q,M} · · ·
...

... 01×M
. . .

...
...

...
. . . 01×M

01×M 01×M diag{(T)q,1, . . . , (T)q,M}


(2.7)

where diag{(T)q,1, (T)q,2, . . . , (T)q,M} is an M×M diagonal matrix with the elements of the qth row of T
in its diagonal. Observe that the specific structure of Hq determines the structure of H in (2.6) and (2.3).
In order to separate the effects of the various optical elements, the representation Hq can be expressed as
Hq = DTTT , where the matrix D represents the mapping operation of the dispersive element. The matrix
D has at most L non zero elements in each row. The specific structure of the (M +L− 1)×ML matrix
D is given by

D =


IM 01×M · · · 01×M

01×M IM · · · 01×M

...
...

. . .
...

01×M 01×M IM

 (2.8)

where IM is an M ×M identity matrix and 01×M are zero-valued row vectors. The matrix TTT represents
the effect of the coded aperture T on fq and has the following structure

TTT = IL ⊗ diag{(T)q,1, (T)q,2, . . . , (T)q,M} (2.9)

where IL is an L× L identity matrix. TTT is thus an M · L×M · L diagonal matrix whose elements are L
repetitions of the elements in the qth row of T. The mapping of fq into gq in (2.5) is then written as

gq = DTTT fq. (2.10)

The vector representation in (2.10), characterizing CASSI, will be critical in formulating the aperture
code optimization problem described in the following sections.

2.3 Coded Aperture Agile Spectral Imaging System (CAASI)

The spectral selectivity is determined by the aperture codes used in each shot. The mathematical model
of the ith measurement shot of the CAASI system is identical to that shown in (2.2) for the CASSI system

(Gi)n,m =

L∑
k=1

(Fk)n,m+k(Ti)n,m+k + (ωωωi)n,m (2.11)

for i = {1, . . . ,K}, where K is the number of shots, except that the ith aperture code pattern Ti used
to sense Gi is different from one shot to another. Notice that the coded aperture Ti can be seen as
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two separate coded apertures applied in tandem. The first coded aperture R is a random binary code
necessary to attain randomized measurement in CASSI. The second coded aperture Wi is the ith code
optimized to achieve a specific spectral band selectivity. Ti is thus represented as the Hadamard product
(Ti)n,m = (R)n,m(Wi)n,m where Wi is the time varying element in each CAASI measurement. In matrix
form, the CAASI system of equations results in

gi = Hif +ωωωi i ∈ 1, . . . ,K. (2.12)

As in the single shot CASSI system, the row measurements giq are decoupled from one another such

that the Hi matrices in (2.12) are block diagonal. The qth row of Gi is then given by giq = Hi
qfq, or

equivalently
giq = DTTT ifq. (2.13)

Note in (2.13) that the source vector fq does not contain the index i, since we assume that the source
remains stationary during the time interval when the K shots are measured. The only difference at this
point, between the static case of the CASSI equation in (2.10) and the CAASI equation in (2.13), is that
the matrix TTT i changes with each shot. The matrices TTT i have the structure given in (2.9), but in this
case, the qth row of Ti can be expressed as ti = r ◦wi where ◦ denotes the Hadamard multiplication of
r and wi, the qth row of the matrices R and Wi, respectively. Figure 2.4 depicts the interaction of the
vector ti with the incoming wave fq. In the static case of (2.9), T does not have a time varying term and
thus t = r. The matrix TTT i can be expressed as TTT i = IL ⊗ diag{(wi)1(r)1, . . . , (w

i)M (r)M}. Using the
product property of the Kronecker product, TTT i is written as

TTT i =
(
IL ⊗ diag{(wi)1, . . . , (w

i)M}
)︸ ︷︷ ︸

WWWi

(IL ⊗ diag{(r)1, . . . , (r)M})︸ ︷︷ ︸
RRR

(2.14)

where WWWi represents the component of the coded aperture wi and RRRi reflects the effect of r. While
the random matrix RRR is not tunable in this design, the matrix WWWi contains weight elements of the
coded aperture that will be optimized. RRR is attained via Bernoulli random realizations, however, random
matrices such as a scrambled Hadamard can be used to construct this random component. Using (2.14)
in (2.13) we obtain giq = DWWWiRRRfq. Letting ρρρ =RRRfq be the effect of the vector rq on the source fq, then

giq can be written as

giq = DWWWiρρρ. (2.15)

Making some matrix indexes manipulations, Eq. (2.15) can be written as

giq = ΓΓΓiuL (2.16)

where uL is the L long vector uL = [1, . . . , 1]
T

and the matrix ΓΓΓi is given by

ΓΓΓ
i =


ρ1(wi)1 ρ2(wi)2 . . . ρL(wi)L · · · ρM (wi)M 0 . . . 0

0 ρM+1(wi)1 . . . ρM+L−1(wi)L−1 · · · ρ2M−1(wi)M−1 ρ2M (wi)M . . . 0

0 0
. . . ρ2M+L−2(wi)L−2 · · · ρ3M−2(wi)M−2 ρ3M−1(wi)M−1 . . . 0

...
...

... · · ·
...

...
. . .

0 0 0 ρ(L−1)M+1(wi)1 · · · ρLM−(L−1)(wi)M−L+1 . . . ρLM (wi)M


T

(2.17)

where ρj is the jth element of ρρρ. It can be observed that the (wi)l terms have a circular shift on l within
each row of ΓΓΓi. Additionally, only L pixels in the detector are affected by a point source in the data cube.
Hence, only L elements of wi in (2.17) need to be optimized. Define the L-long sub-segments of wi as
wi, such that wi is formed by the modulo repetition operator

(wi)m = (wi)mod(m,L) for m = 1, . . . ,M and L < M. (2.18)

Equation (2.18) can be expressed in matrix form as

wi = uM ′ ⊗wi (2.19)
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where M ′ = M
L is the length of the one element vector uM ′ . If the integral part of M

L is not an integer

then the first L
⌊
M
L

⌋
elements of wi are given by (2.19) and the remaining by, (wi)m = (wi)m−L, for

m = L
⌊
M
L

⌋
+ 1, . . . ,M . Reordering the elements of ΓΓΓi in (2.17) such that the (wi)l terms appear in

ascending order, and using the periodicity of wi given in (2.18), we obtain

ΓΓΓ
i=


ρ1(wi)1 ρM+1(wi)1 . . . ρ(L−1)M+1(wi)1 · · · ρLM−(L−1)(w

i)1 0 . . . 0

0 ρ2(wi)2 · · · ρ(L−2)M+2(wi)2 · · · ρ(L−1)M−(L−2)(w
i)2 ρLM−(L−2)(wi)2 . . . 0

0 0
. . . ρ(L−3)M+3(wi)3 · · · ρ(L−2)M−(L−3)(wi)3 ρ(L−1)M−(L−3)(wi)3 . . . 0

...
...

... · · ·
...

...
. . .

0 0 0 ρL(wi)L · · · ρM (wi)L ρ2M (wi)L . . . ρLM (wi)L


T

. (2.20)

Note that the matrix product ΓΓΓiuL in (2.16) and the product ΓΓΓiuL of the reordered matrices in (2.20)
are identical. Hence (2.16) can be rewritten as giq = ΓΓΓiuL. The expression for giq can be further simplified

by factoring out the elements wi in (2.20) leading to

giq = X wi (2.21)

where

X =



ρ1 ρM+1 . . . ρ(L−1)M+1 . . . ρLM−(L−1) 0 . . . 0
0 ρ2 . . . ρ(L−2)M+2 . . . ρ(L−1)M−(L−2) ρLM−(L−2) . . . 0

0 0
. . . ρ(L−3)M+3 . . . ρ(L−2)M−(L−3) ρ(L−1)M−(L−3) . . . 0

...
...

... . . .
...

...
. . .

0 0 . . . ρL . . . ρM ρ2M . . . ρL(M)



T

(2.22)

is a matrix containing the spectral source elements multiplied by the random component of the aperture
code, which are then spectrally shifted. Equation (2.21) is a compact expression for giq, where wi describes
the effect of the optimizable part of the coded aperture. The effect of the others optical elements on the
data cube is accounted for in the reordering of the data matrix X. The complete vector gi is now
succinctly expressed as 

gi1
...

giN

 =


X1w

i
1

...

XNwi
N

 (2.23)

where the structure of the matrices Xj accounting for the jth data cube slice is given by (2.22), and
wi
q is the designable component of the qth row of the coded aperture. In matrix notation (2.23) can be

expressed as

gi = XXXW
i

(2.24)

where W
i

= {wi
1
T
,wi

2
T
. . .wi

N
T }T , and XXX = diag{X1,X2, . . . ,XN} is a block diagonal matrix. Equa-

tions (2.21) and (2.24) provide a new representation for the measurements of CAASI when multiple shots
are admitted. The new formulation is illustrated in Fig. 2.5. In the traditional model (Fig. 2.5(a)), the
input is the data cube f and the output gi is characterized by the matrix Hi. In the new representation

(Fig. 2.5(b)), the input is the matrix XXX and the output is obtained by varying the matrix W
i
. The

matrix XXX represents a reordered version of the vector f so as to account for the spectral sheering and

R, the random term of the coded aperture. Note that the elements of W
i

in the new representation in
(2.24) explicitly contains the components of the coded apertures that must be optimized. Observe that
the matrices Hi in (2.12) have a total of (N)(M + L− 1)× (N ·M · L) elements each, compared to the
N(M +L−1)×L elements of the matrix XXX in (2.23). The new model is thus significantly more compact
than that of (2.12) and consequently it is better suited for iterative optimization algorithms.
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Figure 2.5: (a) The traditional model where the data cube f is processed with the highly sparse matrix
Hi. The coded aperture pattern is hidden in Hi; (b) new model of CAASI: f is first re-ordered and
expanded into the matrix XXX which is then processed by the weight matrix Wi whose elements are the
coded aperture patterns.

2.4 Aperture Code Optimization in Multishot CAASI

Each measurement in CAASI uses an optimized Wi coded aperture component. Since the spectral coding
is mutually independent between the rows of the detector, it is sufficient to design one row of Wi. The
remaining rows are completed by shifted replicas of the first such that Wi = uN⊗wi. Furthermore, since
wi is a concatenation of several identical segments wi, the optimization of the K Wi coded aperture
matrices reduces to the optimization of K wi vectors.

Before the optimization problem is formulated, it is useful to first simplify the notation by deleting
the subindex q in the above formulation, which indicates a particular slice of the CASSI system. It is
also useful to note the similarities of the CAASI system to a multichannel filtering problem where the
input signal is the data cube f and the filter coefficients are the elements of the coded aperture wi. The
filtering problem, in this case, aims at optimizing the coefficients (coded apertures) such that the linear
combination of the outputs at each jth position at the detector is as close as possible to a desired response,
one that only contains information of the specific bands of interest. The coded aperture design problem
is thus analogous to finding the set of the optimal filter coefficients in filter design. More formally, given
an input signal fs and a desired output signal d, then the objective is to find the K optimal filter weight
vectors (aperture codes w1, w2,. . .,wK) and a set of associated weights bij such that the error vector

e = [e1, e2, . . . , eM+L−1]
T

is minimized according to an error criterion. Figure 2.6 depicts the aperture
code optimization problem as a filtering problem for the jth position on a detector row. To proceed with
the filter design approach, a test image cube fs is first created as follows. Define a sequence of distinct
prime numbers {s1, s2, . . . , sL} such that sl 6= sj for all l 6= j. Choosing the set of primes properly, it is
possible to guarantee that

L∑
j=1
j 6=l

sjzj 6= sl (2.25)

for all l, where the coefficients zj are binary, zj ∈ {0, 1}. If a coefficient set {zj}Lj=1 is different from

another {z′j}Lj=1 in at least one element, then from the properties of prime numbers it follows that∑L
j=1 zjsj 6=

∑L
j=1 z

′
jsj . Given the set of prime numbers, the test data cube to be used in the filter

design is then set to
(Fsk)nm = sk for all m, n. (2.26)

Hence Fs, is a cube where each spectral slice takes on the constant value of sk across all the spatial
positions m and n. A slice of the data cube at n = q in vector form is denoted by fs across all m and k
. Clearly (Fsk1)n,m 6= (Fsk2)n,m if k1 6= k2. The mapping operation converting fs into X is shown in Fig.
2.6 as the re-indexing operation.
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Figure 2.6: Code aperture optimization as a filter design problem. The input is a row of the data cube
fs and the desired signal is f0. The filter coefficients (aperture codes w1,w2,. . .,wK) and the coefficients
bij are optimized by minimizing a cost function of the errors e1, e2, . . . , eM+L−1. The error at given jth

position at a row at the detector is the difference between the linear combination of the measurements
(%%%)j and (d)j .

From (2.25) and the CAASI equation (2.21), given the detector measurements sequence at the detector,
gi, it is possible to determine which spectral bands are present in the linear combination yielding gi.
This is the case since (Fsk)qm and X are known. The desired signal d, shown in Fig. 2.6, is created from
Fd which contains only the desired bands and is given by

(Fdk)nm =

{
(Fsk)nm if (λλλ)k = 1

0 otherwise
(2.27)

for all m, n and where the L-long binary vector λλλ indexes the subset of spectral channels of interest. In
particular (λλλ)k is defined as

(λλλ)k =

{
1 if the kth spectral band is of interest

0 otherwise,
(2.28)

for k ∈ {1, . . . , L}. The qth slice of Fd is fd which is thus forced to have only the spectral components of
interest. The output at the detector, when the desired data cube fd is sensed, is given by

di = Xdw̃i (2.29)

where Xd is a matrix whose elements are obtained by the re-indexing of fd. Since Xd contains only
information from the desired spectral bands, then the desired signal di can be calculated by a code w̃i

that simply adds the row elements of Xd. This operation is analogous to using an “all pass” code w̃i

that permits to pass all the spectral information from Xd. In this case, the all-pass code w̃i = uL, in
effect, simply sums all elements of Xd. The vector di in (2.29) does not depend of the coded aperture w̃i

and it is the desired output d. Note that the desired signal d is unique in the sense that only the specific
combination of spectral bands given by λλλ can generate the output of CAASI equal to d. This is precisely
the motivation of using the set of prime numbers in (2.25) as elements of the data cube fs. To further
illustrate the underlying concepts, Fig. 2.7 shows a typical slice of the data cube fs and the corresponding
structure of the matrix X. Observe that the elements of the output gi are calculated by the Hadamard
product of the coded aperture wi and each row of X. In Fig. 2.6 the operation of extracting xj the jth
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Figure 2.7: A slice of the data cube fs is modulated by the vector r and then reorganized into the matrix
X. The output at the detector is calculated as gi = Xwi.

row of X is indicated with the “Row-Select” operation. From Fig. 2.6, the error at jth position in the
detector is

ej = (d)j − (%%%i)j j = 1, . . . ,M + L− 1 (2.30)

where (%%%)j =
∑K
i=1 bijx

T
j wi. Notice that d and xj are known terms and wi represents the unknown aper-

ture codes pattern to be designed. The coefficients bij permit to use all the information available from
the K shots to minimize the jth component at a row at the detector. The coefficients bij are restricted
to the three values {−1, 0, 1} that the value −1 indicates the subtraction of a set of bands, 0 indicates
the suppression of a set of bands, and 1 indicates the summation of a set of bands. The errors origi-
nated from the measurements in (2.30) are concatenated into the common array e′ = [e1, e2, . . . , eM+L−1].

The component-wise squared error metric is first calculated such as e = e′ ◦ e′. The jth element of

e can be expressed as a function of the coded aperture as (e)j =
(

(d)j −
∑K
i=1 bijx

T
j wi

)2

. Note that

(e)j = 0 occurs only when the coded apertures are able to exactly extract the desired bands λλλ in the jth

position in the detector. Note also that when (e)j > 0 then there are additional spectral bands included,
or not all desired bands are present in the jth entry of the %%% vector. Given that the spectral selectivity
consists on obtaining at each position in the detector exclusively the desired spectral components, it is
equivalent to maximizing the number of elements (e)j equal to zero. In other words, it is equivalent to
minimizing the L0 norm of the vector e. Hence, one seeks to obtain the vectors W =

[
w1, . . . ,wK

]
and

the coefficients B =
[
{b11, . . . , bK1}T , . . . , {b1(M+L−1), . . . , bK(M+L−1)}T

]
such that

arg min
W,B

‖e‖0 (2.31)

subject to (W)ki ∈ {0, 1} k = 1, . . . , L, i = 1, . . . ,K

(B)ij ∈ {−1, 0, 1} j = 1, . . . ,M + L− 1.

Since the measurements gi contain complementary information between them, the functionality of the
coefficients bij is to increase the number of solutions in (2.31) such that an iterative algorithm can
converge more easily. Since the elements of wi and bij are binary and ternary, respectively, solving
(2.31) is an NP hard problem. An approximate solution, however, can be sought using a heuristic
approximation such as a genetic algorithm (GA) [?]. GAs are specially well suited to solve optimization
problems that involves binary variables. This optimization technique has already been used in several
optics optimization problems [?, ?]. The genetic algorithm (GA) approach to solve (2.31) is shown in
Table 2.1. The stopping criterion to solve (2.31) is that ‖e‖0 = 0. Notice that this stopping criterion
conduces to a solution where the optimal codes lead to measurements containing exclusively the desired
bands. A measurement containing the desired components can be constructed from the results of the
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optimization as

%%%∗ =

[
K∑
i=1

(B∗)i1x
T
1 w∗i,

K∑
i=1

(B∗)i2x
T
2 w∗i, . . . ,

K∑
i=1

(B∗)i(M+L−1)x
T
M+L−1w

∗i

]
(2.32)

where B∗ contains the optimal linear coefficients and w∗i are the optimal coded apertures attained in
(2.31).

Table 2.1: Iterative Optimization of coded apertures {w∗1, . . . ,w∗K} and the optimal matrix B∗.

Inputs Desired spectral bands λλλ, Number of shots K, Prime numbers sk, Population size S,

Number of iterations N , Mutation percentage pm.

Initialize Data Cube sk → fs → Xs. Desired Signal (sk,λλλ)→ fd → Xd → → d→DDD = d⊗ uTK.

BBB = {b1, . . . ,bK}, where K = 3K , and bm1 6= bm2 for each m1 6= m2, m1 = 1, . . . ,K,

and m2 = 1, . . . ,K.

Global minimum ξ∗ = M + L− 1. Population: For ` = 1, . . . ,S compute:

P
(0)
` = {w1

` , . . . ,w
K
` }, where (wi

`)k=Bernoulli(0.5).

Iteration While, n < N and ξ∗ > 0

For ` = 1, . . . ,S compute

G
(n)
` = XP

(n)
` , GGG(n)

` = G
(n)
` BBB, E

(n)
` =

(
DDD −GGG(n)

`

)
◦
(
DDD −GGG(n)

`

)
(ê

(n)
` )j = min

m

(
E

(n)
`

)
jm

, (ξξξ(n))` = ‖ê(n)
` ‖0,(LLL(n))`j = arg min

m

(
E

(n)
`

)
jm

.

End For

`∗ = arg min
`

(ξξξ(n))`.

If (ξξξ(n))`∗ < ξ∗, then :

ξ∗ = (ξξξ(n))`∗,{w∗1, . . . ,w∗K}T = P
(n)
`∗ , (B∗)kj = (BBB)k(LLL(n))`∗j

.

End If

{P(n+1)
1 , . . . ,P

(n+1)
S } = Mu

(
Cr
(

Sl
(
{P(n)

1 , . . . ,P
(n)
S }, ξξξ

(n)
)))

.

End While

Output Optimal aperture codes w∗1, . . . ,w∗K .

Optimal linear coefficient B∗.

Note j = 1, . . . ,M + L− 1 and k = 1, . . . , L.

A property of the optimized aperture codes is that if the codes w∗1, . . . ,w∗K and their respective
optimal coefficient matrix B∗ can extract the spectral bands given by λλλ, then the same codes with a
different coefficient matrix Bn∗ can extract the spectral bands given by λλλn with

(λλλn)k = (λλλ)(〈k−n〉L), k = 1, . . . L (2.33)

where 〈k − n〉L indicates the k − n modulo L operation or equivalently a n circular shift of period L.
This property requires that λλλ has some circular period N and that the ratio L

N is an integer. Finding
the new matrix Bn∗ involves simple algebraic operations. The optimized aperture codes are thus circular
shift invariant to the vector λλλ.

2.5 Simulations and Results

2.5.1 Coded Aperture Optimization

To test the methodology developed in Section 2.4, the algorithm in Table 2.1 is used to find the optimal
aperture codes for several desired spectral band sets λλλ, for increasing number of measurement shots. The
experiments use a test data cube F s with L = 24 spectral bands in 504nm-757nm and 256× 256 spatial
dimensions. A set of 24 prime numbers sk is generated such that (2.25) is satisfied. The other parameters
of the algorithm in Table 1 are: population size S = 100, mutation percentage pm = 0.01, and maximum
number of iterations N = 5000. In the experiment, the following desired spectral bands λλλ are used in
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the optimization

λλλ1 = [100010100000000000110000] λλλ2 = [100010001000100010001000]

λλλ3 = [101000101000101000101000] λλλ4 = [110000001100000011000000] . (2.34)

From numerous simulations, it can be observed that the algorithm converges for K < L when the vector

(a)

(b)

Figure 2.8: Performance evolution ξ∗ as a function of the iterations when the vectors (a) λλλ2 and (b) λλλ4

in (2.34) are used as input of the GA.

λλλ is circularly periodic. When λλλ is aperiodic, the algorithm converges for K = L. Figure 2.8 shows the
performance evolution ξ∗ as a function of the iterations when the vectors λλλ2 and λλλ4 are used as input
of the AG. Figure 2.9 illustrates the optimal aperture codes w∗i when the vectors λλλ1, λλλ2, λ3, and λλλ4

are used as input to the optimization algorithm. Additionally, Fig. 2.10 shows an 128 × 128 matrix
whose elements are constructed by replicates of the optimal coded apertures and coded by a random
component. Each row of these matrices is constructed by selecting randomly an optical code wi, such
that the entire matrix contains information of the all optimal codes. In addition to the optimal codes,
the optimization provides the optimal coefficient matrix B∗ used to construct the elements of the optimal
virtual measurement %%%∗. Figure 2.11 illustrates the optimal matrix B∗ when λλλ4 is used; due to space
limitations only a portion of this matrix is shown. Note that the patterns in Fig. 2.11 exhibit periodicity,
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except in the beginning and end which exhibit edge structures that are different from that of the main
region.

Figure 2.9: Optimal coded apertures w∗i for the vectors (a) λλλ1, (b) λλλ2, (c) λλλ3, and (d) λλλ4 indicated in
(2.34).

(a) (b)

(c) (d)

Figure 2.10: An 128 × 128 realization of the optimal coded apertures for the vectors (a) λλλ1, (b) λλλ2, (c)
λλλ3, (d) λλλ4 given in (2.34).

2.5.2 Filter Bank Representation

The filter bank spectral model aims at reconstructing the entire data cube from the V compressive
measurements where each measurement has information only from one of V disjoint spectral subsets with
the constraint of using only K ≤ L shots. Each subset can be reconstructed separately and the results can
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Figure 2.11: A part of the matrix B∗ is shown. The lth column of B∗ represents the optimal coefficient to
construct the measurement element (%%%∗)l. The vector λλλ4 is used as input of the optimization algorithm.

be merged. The disjoint spectral subsets are specifically designed such that the shift invariance property
of the coded apertures developed in previous sections is used. More specifically, suppose that the L long
vector λλλ has circular period N , define U as the maximum number of consecutive one elements in a period
of λλλ, and define V as V =

⌈N
U
⌉
. Then the complete data cube can be reorganized in V compressive

measurements with information only from the bands given by {λλλ0,λλλ1, . . . ,λλλV−1} where the elements of
each subset λλλn is given by

(λλλn)k = (λλλ)(〈k−nU〉)L k = 1, . . . , L. (2.35)

The filter bank representation is attained as follows: (a) generate a set of vectors {λλλ0, . . . ,λλλV−1} where
each vector λλλi is a shifted version of λλλ0 = λλλ; (b) verify that λλλ0 ∨ λλλ1 ∨ . . . ∨ λλλV−1 = uL where ∨ is the
boolean sum; (c) The spectral components given by the different λλλi can be reconstructed separately and
the results can be merged with the other reconstructions. Since

[
w∗1, . . . ,w∗K

]
are the optimal codes

and B∗ is the optimal coefficient matrix to recover λλλ, then each combination {
[
w∗1, . . . ,w∗K

]T
,Bi∗}

can be seen as a compressive filter bank to recover λλλi, where Bi∗ is a reordered version of the matrix
B∗. A representation of this technique was illustrated in Fig. 2.2. Define the “modp” λλλ pattern which
elements are given by

(λλλ)k = mod(k, p) k = 1, . . . , L (2.36)

where mod is the modulo operation, p is the circular period of λλλ, and L is the total number of bands.
Here, it is assumed that the ratio L

p is an integer. These “modp” patterns can be used to decompose

the data cube in the subsets {λλλ0,λλλ1, . . . ,λλλp−1} where λλλ0 is equal to λλλ in (2.36) and the others λλλi are
given by (2.35) with U = 1. Notice that the λλλi subsets satisfy the above (b) condition necessary to apply
the filter bank decomposition. Decompose the data cube in the “modp” subsets requires p shots. The
respective optimal coded apertures to select the modp patterns is referred to as “modp filter bank coded
apertures”. For example, referring to Eq. (2.34), λλλ2 is a mod4 pattern and the codes of Fig. 2.9(b) are
a mod4 filter bank coded apertures.

2.5.3 Reconstruction Algorithm

A number of CS reconstruction algorithm are available in the literature [?, ?, ?, ?]. The Gradient
Projection for Sparse Reconstruction algorithm (GPSR) [?] was used to reconstruct the spectral data
cubes in our simulations as it exhibits faster computational speed. This algorithm reconstructs of the data
cube f by solving the minimization f̂ = Ψ{arg min

θ′
‖%%%∗ −HΨθ′‖22 + τ‖θ′‖1}, where %%%∗ are the optimized

measurements. The operation that involves the sparse matrix H are implemented through the indexes
of non-zero elements of the matrix H instead of using it directly. The base representation Ψ is the
Kronecker product of three basis Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3, where the combination Ψ1 ⊗Ψ2 is the 2D-Wavelet
Symmlet 8 basis and Ψ3 is the Cosine basis [?]. A data cube of satellite images is used, it has 24 spectral
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channels and 256×256 pixels of spatial resolution. Reconstruction was realized using a desktop with 3.06
GHz Intel Core 2 Duo processor, and 4GByte 1067 MHz DDR3 RAM. The simulation tool was Matlab
2007a version 7.4.0 for MacOS version 10.6.4. The simulations were realized using double numerical
precision. The maximum number of iterations in the GPSR algorithm is 700 and the stopping criterion
as recommend in [?] is the objective function. Figure 2.12(b), Fig. 2.12(c), and Fig. 2.12(d) depict the
reconstruction results for the first spectral band of the data cube applying the technique of compressive
filter bank. The mod2, mod12, and mod24 filter bank coded apertures are used in the decomposition.
Clearly the SNR increases with the number of shots used.

(b) PSNR 34.29 dB(a)

(c) PSNR 42.4 dB (d) PSNR 50.7 dB

Figure 2.12: Reconstruction of the first spectral band of the 24 spectral band data cube. (a) Original;
reconstruction using (b) mod4 filter bank coded apertures, 4 shots; (c) mod12 filter bank coded apertures,
12 shots; (d) mod24 filter bank coded apertures, 24 shots.

A comparison between the compressive filter bank technique and a random multishot approach was
realized. The random multishot technique consists on using random coded aperture patterns to realize
the compressive measurements [?, ?]. In that technique, no optimization of the coded apertures was
carried out. Figures 2.13(b), 2.13(c), and 2.13(d) show the reconstruction of the same first band of the
data cube using the random codes for K equal to 2, 12 and 24 shots. Figure 2.14 illustrates the general
results in terms of SNR for the multishot and filter bank approaches as a function of the number of shots
K. Notice that in the multishot case, the complete spectral data cube is reconstructed at once. In the
filter bank approach, on the other hand, the complete data cube is divided in K disjoints subsets where
the nth subset λλλn is given by

(λλλn)j =

{
1 for j = n,K + n, 2K + n, . . . , ( LK − 1)K + n

0 otherwise.
(2.37)

where n = 0, . . . ,K − 1. Each desired subset is reconstructed independently from others. The recon-
structed subset bands are then merged and the total SNR is calculated. The results show that when
the number of shots increases, the filter bank approach is superior in quality of reconstruction. Figure
2.15 shows the respective reconstruction time for the same coded apertures used in Fig. 2.14. For the
reconstruction technique Random Multishot, the reconstruction time decreases with increasing number of
shots because when more shots are used the system of equations are less undetermined and the objective
function decreases more quickly through the iterations. In the filter bank case the reconstruction times
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(b) PSNR 33.08 dB(a)

(c) PSNR 34.68 dB (d) PSNR 34.74 dB

Figure 2.13: Reconstruction of the first spectral band of the 24 spectral band data cube. (a) Original; (b)
random coded aperture, 4 shots; (c) random coded aperture, 12 shots; and (d) random coded aperture,
24 shots.

Figure 2.14: Mean PSNR for the reconstructed data cube as a function of the number of shots. The
techniques of random multishot and compressive modp filter bank are shown.

are shown using both a single processor and a processor for the reconstruction of each subset of bands.
The approach using several processors is coined “parallel filter bank”. The parallel filter bank approach
provides up to two orders of magnitude faster reconstruction than the random multishot approach. In
the second experiment, we observe the spectral selectivity of the optimized coded apertures. In this case
the reconstruction of the 1st and 18st bands are of interest. The vector λλλ4 in (2.34) is used as input of the
optimization algorithm. In this experiment, the results for K equal to 4, 8, 12, and 16 shots are shown in
Figs. 2.16(c)-2.16(d), 2.16(e)-2.16(f), 2.17(a)-2.17(b), and 2.17(c)-2.17(d) respectively. Note that in Fig.
2.8(b) shows a minimum number of K = 8 shots for convergence of the optimization algorithm. However,
Figs 2.16(c)-2.16(d) show that it is possible to reconstruct the desired spectral bands with fewer number
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Figure 2.15: Reconstruction times for the full data cube as a function of the number of shots when is used
(a) pure random coded apertures (Random Multishot); (b) modp filter bank optimized coded apertures
(Filter Bank); and (c) modp filter bank coded apertures using a processor for each subset of bands (Filter
Bank Parallel).

of shots.

2.6 Conclusions

We have developed the underlying theory and optimization framework for a new Coded Aperture Agile
Spectral Imaging System (CAASI) which adds the spectral selectivity property to CASSI. The mathemat-
ical model of CAASI expresses the output signal as the product of a reordered version of the source input
and the coded aperture. Using the new CAASI representation, an optimization algorithm is developed
which finds the optimal coded apertures to be used in a multishot system such that spectrally selective
compressive measurements are attained. The optimization aims at minimizing the L0 norm between a
data cube and a desired cube containing only the spectral bands of interest. A Genetic Algorithm solves
the L0 optimization problem and finds the minimum number of shots for convergence. The optimization
algorithm converges to K < L shots when the subset of desired bands exhibits some circular periodicity
which is originated because any assumption is made over the random component of the coded aperture.
The designed coded apertures exhibits a circular shift invariance property that permits to divide the
reconstruction of the complete data cube in V ≤ K less complex reconstructions problems. This property
of the optimal codes can be seen as a compressive filter bank decomposition. The filter bank approach
reconstructs either the complete data cube, or a selective subset of bands, with higher PSNR and takes
up to two orders of magnitude less processing time than the traditional multishot approach with random
coded apertures.
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(a) (b) 

(c )  PSNR 34.33 dB (d) PSNR 33.55 dB 

(e) PSNR  37.30 dB (f) PSNR 36.57 dB 

Figure 2.16: Reconstruction of the 1st and 18th spectral band of the 24 band data cube. (a) Original 1st

band (b) original 18th band; reconstruction of the respective band using the vector λλλ4 in (2.34). (c), (d)
4 shots ; (e), (f) 8 shots.
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(a) PSNR 39.00 dB (b) PSNR 38.91 dB

(c) PSNR 39.59 dB (d) PSNR 39.63 dB

Figure 2.17: Reconstruction of the 1st and 18th spectral bands indicated in Fig. 2.16(a) and 2.16(b).
Reconstruction of the respective band using the vector λλλ4 in (2.34) for (c), (d) 12 shots; (e), (f) 16 shots.
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Chapter 3

Rank Minimization Coded Aperture
Design for Spectrally Selective
Compressive Imaging

3.1 Introduction

Consider again the Code Aperture Snapshot Spectral Imaging (CASSI) system that allows capturing
spectral imaging information of a 3D cube with just a single 2D measurement of the coded and spectrally
dispersed source field [?]. More formally, suppose a hyperspectral signal FFF ∈ RN×M×L, or its vector
representation fff ∈ RN ·M ·L, is S sparse on some basis ΨΨΨ3D, such that fff = ΨΨΨ3Dρρρ can be approximated by
a linear combination of S vectors from ΨΨΨ3D with S � (N ·M · L). Here, N ×M represents the spatial
dimensions and L is the spectral depth of the image cube. Compressive sensing shows that fff can be
recovered from m random projections with high probability when m & S log(N ·M · L) � (N ·M · L).
The CASSI projections are given by yt = Hρρρ, where H = ΦΦΦΨΨΨ3D is an N(M +L−1)× (N ·M ·L) matrix
and ΦΦΦ is a random measurement matrix determined by the coded apertures and the dispersive element
used in CASSI.

Recently, the CASSI spectral imaging architecture has been extended to admit multiple measurement
shots [?, ?, ?]. The multiple measurements are attained as separate FPA measurements, each with a
distinct coded aperture that remains fixed during the integration time of the detector. There are several
advantages to multiple shots. First, the number of compressive measurements in CASSI may not meet
the minimum needed for adequate reconstruction. CS dictates that the number of measurements must be
in excess of S log(N ·M · L). Failure to collect a sufficient number of measurements leads to inadequate
signal reconstruction. With each FPA shot, CASSI collects N(M + L − 1) additional measurements.
For spectrally rich scenes or very detailed spatial scenes, a single shot CASSI measurement may not
provide a sufficient number of compressive measurements. Increasing the number of measurement shots
will multiply the number of measurements, thus rapidly overcoming such limitations.

A second advantage to multiple shots is that spectral selectivity can be attained by coded aperture
design. Notably, the coded aperture patterns can be designed so as to maximize the information content
on a pre-specified subset of spectral bands of particular interest in the CASSI compressive measurements.
Spectral selectivity is of interest in many applications, including wide-area airborne surveillance, remote
sensing, and tissue spectroscopy in medicine. The optimal spectral bands in airborne surveillance, for
instance, depend on atmospheric conditions, time of day, the targets of interest, and the background
against which the targets are viewed [?]. In these applications, the spectral signatures of interest live in
a spectral band subspace. Efforts placed on acquiring the entire spectral image cube, to then throw away
a large portion of this data is wasteful in many regards.

Chapter 2 provided the first approach for spectral selectivity in multi-shot CASSI; however, the selec-
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tive spectral profiles were limited to periodic patterns and the minimum number of shots was restricted
to the periodicity of the spectral pattern. In most practical applications, however, the spectral profiles
of interest are not periodic and the number of shots is restricted by the application. The main contri-
bution of this Chapter is the development of a more general and more effective mathematical framework
for multi-shot CASSI and the corresponding algorithms for coded aperture optimization that allow the
reconstruction of arbitrary subset of bands, periodic or aperiodic, whilst minimizing the required number
of shots.

The CASSI model is first developed for a slice at the detector. It is then used to build a generalized 2D
CASSI model. The output at a slice in the detector is expressed as the product of a matrix accounting
for the dispersed spatio-spectral source density and a vector accounting for the coded aperture. The
coded aperture for the ith measurement, denoted as ti, is seen as two separate coded apertures applied in
tandem which simplifies their optimization. The first coded aperture wi is a structured code optimized
to attain the spectral band selectivity. The second coded aperture ri is a pseudorandom binary code
necessary to attain randomized measurements in CASSI. The coded aperture used in each measurement
is obtained by the Hadamard product ti = wi ◦ ri. The coded aperture optimization is divided in two
parts. First the tunable components wi are optimized to achieve spectrally selective measurements. The
required number of shots K is dictated by the rank of a matrix containing the wi codes. Second, the
pseudorandom components of the coded apertures ri are optimized so as to minimize the required num-
ber of shots. This is achieved by minimizing the rank of the matrix containing the set of codes ti. The
optimized set of coded apertures leads to spectrally selective compressed measurements with improved
characteristics for meeting Restricted Isometry Property (RIP) of the projections used in CASSI. The
compressed measurements are then used to reconstruct the desired spectral cube using a gradient based
reconstruction algorithm for sparse signals.

Notation: The following font notation is used hereafter. Bold uppercase Roman and Greek letters
represent matrices. Bold lower case Roman and Greek letters represent column vectors. The entries
of the matrix Y are Yij or (Y)ij and the entries of the vector y are yj or (y)j . Subindices, upper
indices and calligraphic fonts are used to represent distinct variables. Hence, the variables yV and ykV
are distinct column vectors. The variables Yi and yi for different i are distinct matrices and column
vectors respectively. yT is a row vector and YT is the transpose of the matrix Y. The power of a matrix
is presented using parenthesis, thus the power two of the matrix ΘΘΘL is (ΘΘΘL)2.

3.2 Matrix-Based CASSI Modeling

The coded aperture single shot spectral imaging system is depicted in Fig. 2.3 [?]. The coding is realized
by the coded aperture T (x, y) as applied to the spatio-spectral density source f0(x, y, λ) where (x, y)
are the spatial coordinates and λ is the wavelength resulting in the coded field f1(x, y, λ). The coded
density is spectrally dispersed by a dispersive element before it impinges on the focal plane array (FPA)
as f2(x, y, λ),

f2(x, y, λ)=

∫∫
T (x′,y′)f0(x′, y′, λ)h(x′−αλ−x,y′−y)dx′dy′

where T (x′, y′) is the transmission function representing the coded aperture, h(x′−αλ− x, y′− y) is the
optical impulse response of the system, and αλ is the dispersion induced by the prism assuming a linear
dispersion. Each spectral slice of the data cube is thus spatially modulated by the coded aperture and
dispersed by the dispersive element [?]. The compressive measurements across the FPA are realized by
the integration of the field f2(x, y, λ) over the detector’s spectral range sensitivity. The source f0(x, y, λ)
can be written in discrete form as Fijk where i and j index the spatial coordinates, and k determines the
kth spectral plane. Assuming that the band-pass filter of the instrument limits the spectral components
between λ1 and λ2 and the side length of the square detector pixel is ∆d, the number of resolvable bands
L is limited by L = αλ2−λ1

∆d
. The spectral resolution is limited by ∆d

α . Additionally, it is assumed that
the side length of the coded aperture square pixel ∆c satisfies κ∆c = ∆d, where κ ≥ 1 is an integer.
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Figure 3.1: Illustration of the spectral data flow in CASSI. The qth slice of the data cube FFF with 11
spectral components is coded by a row of the coded aperture t̃ and dispersed by the prism. The detector
captures the intensity y by integrating the coded light.

The horizontal and vertical spatial resolutions are thus limited by ∆d. The discretized output at the
detector is given by

Gjk =

L−1∑
i=0

Fj(k+i)(k)Tj(k+i) + ωjk (3.1)

where Gjk is the intensity at the j, k position at the detector whose dimensions are N × (M + L − 1).
FFF is an L×N ×M spectral data cube, T is the coded aperture and ω is the white noise of the sensing
system. The output Gjk can be written in matrix notation as

yt = ΦΦΦfff +ωωω (3.2)

where yt is a vector representation of G and fff is the vector representation of the data cubeFFF . Notice that
fff is represented as fff = ΨΨΨ3Dρρρ where ρρρ are the sparse coefficients of representation on the basis ΨΨΨ3D [?].
In this Chapter, the coded aperture is considered binary and the dispersive element is considered linear.
In practice, it is necessary take into account the various optical artifacts and non-ideal characteristic of
the optical system. Observe in (3.1) that the spatial dimension j can be fixed to a specific value, for
example j = q represents the qth row measurement. In this case (3.1) would represent the model of a slice
of CASSI. Figure 3.1 shows a typical slice model where a slice F of the data cube FFF is coded by the coded
aperture t̃, dispersed by the prism, and the resulting light is integrated at the detector resulting in the
measurement y. The vectorization of F is f . Given the separability in slices of (3.1), a slice model of the
instrument is developed first. The results are thereafter generalized to a complete 2D detector. Observe
that the coded aperture effects are embedded in the matrix ΦΦΦ in (3.2), then a more suitable matrix-based
model than that given by (3.2) needs to be developed in order to optimize the coded aperture. This is
developed in the remainder of this section. To begin, let ΘΘΘL be the L× L cyclic permutation matrix

ΘΘΘL =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
... 0

. . . 0 0
0 0 . . . 1 0

 . (3.3)

Next, define the matrix JL as the L×L matrix having only one non-zero element in the coordinate (1,1)
as

JL =


1 0 . . . 0
0 0 . . . 0
...

...
. . . 0

0 0 . . . 0

 . (3.4)

To simplify the notation define the matrix PL;k as

PL;k = ΘΘΘk
LJL(ΘΘΘT

L)k. (3.5)
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Figure 3.2: The qth slice of the data cubeFFF is represented by the matrix F. Each Fjk element is pictorially
represented as a small cube where the gray color indicates a zero value.

Notice that multiple applications of the matrix in (3.3) perform the same cyclic permutation several
times. The matrix PL;k in (3.5) will be used to select an specific row or column of a matrix. Finally,
define the reversing order matrix C as

C =


0 0 . . . 1
...

. . . 0

0 1
...

1 0 . . . 0

 . (3.6)

3.2.1 Slice Model of the Spectral Data Cube

The qth slice of FFF is created as

Fjk = Fqjk j = 0, . . . ,M − 1, k = 0, . . . , L− 1. (3.7)

Notice that each column of F contains spatial information at a given wavelength and each row of F
consists of all spectral components at a specific spatial position. Figure 3.2 depicts a typical matrix F
representing a slice of a spectral data cube and the respective elements present in CASSI. The kth column
of F is denoted as fk, then the matrix F can be expressed as F = [f0, f1, . . . , fL−1]. Observe that F can
be decomposed into L matrices as

F =

L−1∑
k=0

Fk (3.8)

where Fk =

k︷ ︸︸ ︷
[0M , . . . ,0M , fk,

N−1−k︷ ︸︸ ︷
0M , . . . ,0M ] and 0M is an M long column vector with zero elements.

Observe that Fk can be written more succinctly as

Fk = FPL;k (3.9)

where PL;k is given in (3.5). The slice F can then be rewritten as

F =

L−1∑
k=0

FPL;k. (3.10)

3.2.2 Coded Aperture Effect Model

Consider the slice F in (3.10) impinging on a row of the 2D coded aperture T, as depicted in Fig. 3.1.
This row of the coded aperture, represented by the vector t̃ =

[
t̃0, . . . , t̃M−1

]
, modulates the columns of
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F. The output after the coded aperture can be represented by F = TF where T = diag
(
t̃0, . . . , t̃M−1

)
is

an M×M diagonal matrix containing the respective row of the coded aperture. As mentioned previously,
the coded aperture t̃ is defined as the Hadamard product of two vector components as t̃ = r̃ ◦ w̃, where
r̃ = [r̃0, . . . , r̃M−1] accounts for a pseudorandom component and w̃ = [w̃0, . . . , w̃M−1] accounts for an
adjustable component of t̃. T can thus be expressed as T = RW where R = diag (r̃0, . . . , r̃M−1) and
W = diag (w̃0, . . . , w̃M−1). Figure 3.2 shows that in CASSI only L pixels at the detector are affected by a
point source in the spectral data cube. More specifically, in Fig. 3.2 the component of the coded aperture
(t̃)M−1 with the dashed outline affects only L pixels at the detector y. Hence, both the adjustable
component w̃ and the random component r̃ can be modeled as L-long vectors repeated via a modulo
operator to span the length M of the detector. More specifically the elements of w̃ and r̃ are calculated
as

w̃j =wmodL(j) j = 0, . . . ,M − 1

r̃j =rmodL(j) j = 0, . . . ,M − 1 (3.11)

where w and r are L-long vectors. Notice that the coded aperture elements can be expressed as t̃j =
tmodL(j) for j = 0, . . . ,M − 1 where the vector t is t = r ◦w. These vectors can thus be written as

w̃ =uM ′ ⊗w

r̃ =uM ′ ⊗ r

t̃ =uM ′ ⊗ t (3.12)

where ⊗ is the Kronecker product, and uM ′ is the one-valued vector of length M ′ = M
L

1. From (3.12)

W and R can be expressed as W = diag (uM ′ ⊗w) and R = diag (uM ′ ⊗ r). The matrix F, representing
the coded slice F, can thus be expressed as

F = RWF. (3.13)

3.2.3 Dispersive Element Effect Model

Given the matrix representation of the coded slice at the source in (3.13), here we show the effect of
the dispersive element over this matrix. Observe that each column of F represents a given spectral band
spatially coded by the coded aperture. The effect of the dispersive element can then be modeled as a
shift of each column of F in k units where k expresses the kth wavelength (column). Further, the matrix
F needs to be augmented by L − 1 rows to correctly model the prism’s effect. Let the matrix Y model
the output of the dispersive element when the input is the matrix F =

[
f0, . . . , fL−1

]
in (3.13). Y is then

given by

Y =


f0 01 . . .

f1 . . . 0L−1

. . .

0L−1 0L−2 . . . fL−1

 (3.14)

where 0i = 0.ui is an i−long zero-valued column vector. Figure 3.2 illustrates the formation of Y. Define
V as V = M + L− 1. In order to express the matrix Y compactly, the V × L matrix Fk is defined as

Fk =

[
0V×k fk 0V×(L−k−1)

0(L−1)×1

]
(3.15)

where 0V×k and 0V×(L−k−1) are matrices of V × k and V × (L− k− 1) zero elements respectively. Then

the matrix Y can be written as

Y =

L−1∑
k=0

(ΘΘΘV )kFk (3.16)

1If M
L

is not an integer then the first L
⌊
M
L

⌋
elements of w̃ and r̃ are given by (3.12) and the remaining by, w̃j = wj−L,

and r̃j = rj−L for j = L
⌊
M
L

⌋
, . . . ,M − 1.
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where the V ×V matrix ΘΘΘV has the same purpose and structure of ΘΘΘL in (3.3). Defining the matrix I as

I =
[
IM×M0M×(L−1)

]T
(3.17)

where IM×M is an M ×M identity matrix, Fk in (3.15) can be expressed as

Fk = IRWFk (3.18)

where Fk is given by (3.9). Replacing (3.9) and (3.18) in (3.16) the matrix representation of the prism
effect on F is

Y =

L−1∑
k=0

(ΘΘΘV )kIRWFPL;k. (3.19)

Observe that the jth row of Y contains the spectral information that is integrated in the jth pixel detector.

Table 3.1: CASSI Equations Model Summary.

Dimensions Complementary Equations

Data Cube
Full Data Cube FFF N ×M × L Fjk = Fqjk,

Slice F =
∑L−1
k=0 FPL;k M × L F = [f0 . . . fL−1].

Coded Aperture
2D Coded Aperture T N ×M R = diag (r̃), W = diag (w̃),
Slice Coded Aperture t L T = RW, w̃ = uM′ ⊗w,
Random Component r L r̃ = uM′ ⊗ r, t̃ = uM′ ⊗ t,
Designable Component w L t = r ◦w.

Coded Aperture Output F = RWF M × L
Prism Output V = M + L− 1

Y =
∑L−1
k=0 (ΘΘΘM )kIRWFPL;k V × L PL;k = ΘΘΘkLJL(ΘΘΘTL)k.

Detector Output , two versions:

y =
∑V−1
j=0 PV ;j

∑L−1
k=0 (ΘΘΘV )kIFPL;kC(ΘΘΘTL)j+1t V

y =
∑V−1
j=0 PV ;j

∑L−1
k=0 (ΘΘΘV )kIRFPL;kC(ΘΘΘTL)j+1w V

3.2.4 Detector Measurements

The detector integrates all coded light that comes from the dispersive element. The vector of intensities
at the detector can be calculated as

y = YuL (3.20)

where uL is a one-valued L long vector. Substituting (3.19) in (3.20), we obtain

y =

L−1∑
k=0

(ΘΘΘV )kIRWFPL;kuL. (3.21)

Property 1 Given a slice F as input to CASSI impinging onto the slice aperture code t, the FPA
measurement at the detector is

y =

V−1∑
j=0

PV ;j

L−1∑
k=0

(ΘΘΘV )kIFPL;kC(ΘΘΘT
L)j+1t. (3.22)

Equivalently, the output is given by

y =

V−1∑
j=0

PV ;j

L−1∑
k=0

(ΘΘΘV )kIRFPL;kC(ΘΘΘT
L)j+1w, (3.23)

where PV ;j, ΘΘΘM , I, PL;k, C, and ΘΘΘL are the shifting matrices defined in (3.5), (3.3), (3.17), and (3.6).

Observe that (3.22) is specially suitable for the design of the coded aperture t since t appears at the
right most element in (3.22). In contrast, the most right element in (3.23) is w. Hence, Eq. (3.23) can
be used to design the component w of the coded aperture when the random component r is assumed to
remain fixed. Table 3.1 summarizes the principal results of the slice CASSI model.
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(e)

Figure 3.3: (a) A random coded aperture and (b) a spectrally selective optimal coded aperture for a 12
shot CASSI system. The corresponding FPA measurements are shown in (c) and (d). The zoomed areas
illustrate the wavelengths present at each pixel measurement where the spectral selectivity of the optimal
codes is clearly seen. The desired spectral profile λλλ ∈ [461nm− 471nm, 641nm− 668nm] is illustrated
in (e).

3.3 Optimal Codes for Spectral Band Selectivity

Spectral selectivity aims at designing coded aperture sets that obtain compressive measurements with
only information from a given set of bands of interest. Furthermore, the optimization aims at the use of
the smallest number of measurements. Figure 3.3 illustrates a sample of a spectrally selective optimal
coded aperture and the respective FPA measurement. There, it is possible to observe that the FPA
spectrally selective measurement contains only wavelengths from a specific set of bands. In particular,
observe that each pixel in the zoom area in Fig 3.3(d) contains exclusively spectral components in the
range [461nm− 471nm, 641nm− 668nm]. In contrast, the zoom area in Fig. 3.3(c) shows that a CASSI
measurement using random codes contains spectral components of the whole wavelength range. The
coded aperture design developed hereafter can be summarized as follows: A) Obtain an expression for
the desired spectrally selective compressive measurement signal d from the observation spectral image
slice F. B) Determine a set of K optimal weights {wαj}K−1

j=0 such that the vector g0 = d can be

constructed from the respective K compressive measurements {yαj
}K−1
j=0 . C) Generalize the results in

(3.3) by incorporating the random components of the coded aperture rαj
such that the set {gj}U−1

j=0

containing U different realizations of the desired signal d can be estimated. D) Optimize the realizations
of the pseudorandom components rαj

such that the number of shots K in (3.3) is further reduced to a
desired number K ′ ≤ K.

3.3.1 Desired Compressive Measurements

The reference compressive measurement signal d is created by zeroing out all spectral bands at the input
except those that are desired. More specifically, define the L long vector λλλ indexing the desired spectral
bands as

λk =

{
1 if the kth spectral band is of interest

0 otherwise.
(3.24)

Furthermore, let L = ‖λλλ‖0 be the number of desired bands, define the index of the jth nonzero component
of λλλ as εj , and let ΛΛΛ = diag (λ0, . . . , λL−1) be the diagonal matrix containing the desired band indices
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in (3.24). Given the slice F, the matrix FΛΛΛ contains only the spectral information from the desired
bands. Fixing the random component r and making w = uL, y in (3.23) results in the output containing
the information from the spectral data cube F coded by the random component r. In addition, if F is
replaced by FΛΛΛ then the output is a compressive spectral measurement containing only information of
the spectral bands of interest coded by r. More specifically, using (3.23) the desired output is

d =

V−1∑
j=0

PV ;j

L−1∑
k=0

(ΘΘΘV )kIRFPL;kλλλ. (3.25)

Notice that d in (3.25) is created by sensing the desired data cube FΛΛΛ and by bypassing the effect of the
coded aperture w. The next sub-section aims at obtaining the same values of the vector d by sensing
the complete data cube F using the CASSI system and by varying the term w in (3.23).

3.3.2 Coded Aperture Design for w

Given the expressions for y and d in (3.23) and (3.25), respectively, the objective in the design of w in
(3.23) is to make all the elements of y and d equal, where the random components of the coded aperture
r are not yet considered, such that all the elements of r are set to one. In order to estimate the weights
w, the output in (3.23) is equated to that of the desired response in (3.25) resulting in

λλλ = C(ΘΘΘT
L)j+1w j = 0, . . . , V − 1. (3.26)

Solving (3.26) for w results in

w = (ΘΘΘL)j+1C−1λλλ j = 0, . . . , V − 1 (3.27)

where it can be observed that a single vector w cannot satisfy (3.27) for all j. Hence, V − 1 vectors must
be used. Let these vectors be wj for j = 0, . . . , V − 1. Let yj be the CASSI output in (3.23) when the
coded aperture wj is used, then the element by element equality condition (d)j = (y)j can be written as

(d)j = (yj)j j = 0, . . . , V − 1. (3.28)

Since (ΘΘΘT
L)j = (ΘΘΘT

L)j+L, then only L values of j are needed to be taken into account in (3.27), leading to

wj = (ΘΘΘL)j+1C−1λλλ j = 0, . . . , L− 1

wj+mL = wj m = 0, 1 . . . ,

⌊
V

L

⌋
. (3.29)

Consequently, (3.28) is modified to

(d)j = (ymodL(j))j j = 0, . . . , V − 1. (3.30)

The condition in (3.30) can then be satisfied using L CASSI shots whose outputs are given by y0, . . . ,yL−1.
Observe that some of coded apertures in (3.29) can be expressed as a linear combination of the others.
Further, since wj and yj are linearly related, some of the outputs yj can also be expressed as the linear
combination of others. It is thus possible to calculate d in (3.30) using K < L shots. To estimate
the K linearly independent weight vectors, the coded apertures in (3.29) are arranged into the matrix
Mw = [w0, . . . ,wL−1] or equivalently

Mw =
[
ΘΘΘLC−1λλλ, (ΘΘΘL)2C−1λλλ, . . . , (ΘΘΘL)LC−1λλλ

]
. (3.31)

Then, the minimum number of shots K for a given set of bands of interest is the number of independent
columns of Mw. Hence,

K = rank (Mw) (3.32)

where rank(Mw) is the rank of the matrix Mw. The K linear independent columns of Mw are the linear
independent weight vectors wαk

for k = 0, . . . ,K − 1. The remaining L − K columns of Mw can be
estimated using the ensemble of vectors WWW =

[
wα0

, . . . ,wαK−1

]
. The jth vector wj in (3.29) can be

expressed as

wj =

K−1∑
k=0

Ckjwαk
for j = 0, . . . , L− 1 (3.33)

where the coefficients Ckj are the elements of CCC =
(
WWWTWWW

)−1WWWTMw.
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3.3.3 Spectrally Selective Image Measurements

Given the optimal coded aperture set WWW =
[
wα0

, . . . ,wαK−1

]
and the corresponding CASSI measure-

ments of a scene yα0
, . . . ,yαK−1

, the goal is to re-order these measurements and select the entries which
contain only the bands of interest. It turns out that the redundant representation of the weights shown
in (3.33) provides a simpler structure in which to identify the entries of interest. To this end, the set of
measurements {yαj}K−1

j=0 is expanded into the set

yj =

K−1∑
k=0

Ckjyαk
j = 0, . . . , L− 1 (3.34)

where (3.34) uses the fact that there exists a linear relation between wj and yj . Note that in obtaining
(3.34), we are not taking additional measurements, we are only combining entries of the existing set of
measurements {yαj

}. Once the expanded measurement vectors {yj} are available, the elements within

this set that contain only the spectral component of interest must be identified. Let {gj}K−1
j=0 be the K

possible measurement vectors that satisfy the above condition obtained by selecting elements in (3.34).
Property 2 describes the structure of the first vector g0.

Property 2 Let Z = [y0, . . . ,yL−1] be the ensemble matrix containing the expanded measurements vec-
tors in (3.34). The vector g0 ∈ RV obtained from Z as (g0)i = (Z)imodL(i) or equivalently (g0)i =
(ymodL(i))i for i = 0, . . . , V − 1 contains measurements with spectral component of interest only, regard-
less of the value taken by the pseudorandom component r.

Proof: 1 When the pseudorandom component is taken into account Eq. (3.27) is rewritten as

λλλ ◦ r = r ◦C(ΘΘΘT
L)j+1w j = 0, . . . , V − 1. (3.35)

The optimal set of weights when the pseudorandom component is taken into account is given by solving
(3.35). Notice that if the set of vectors {wj}L−1

0 solve (3.27) then they also solve (3.35). Hence, the
optimal set of weights calculated without taking into account the random components can be used to solve
(3.35). Consequently, equations (3.29) and (3.30) which were derived from (3.27) are valid regardless of
the values taken by the pseudorandom components. From (3.30), note that (d)0 = (y0)0, (d)1 = (y1)1,
and so on, such that it is possible to construct a selective measurement using the set {yi}. Let g0 be the
selective measurement whose elements are given by

g0 =
[
y00, y11, . . . , y(L−1)(L−1), y(0)L, y1(L+1),

. . . , ymodL(V−1)(V−1)

]T
(3.36)

where the element yji is yji = (yj)i. Given the matrix Z, Eq. (3.36) can be seen as (g0)i = (Z)imodL(i)

for i = 0, . . . , V − 1.

Note that the elements in g0 are the diagonal entries in Z as illustrated in Fig. 3.4(a). It is important
to point out that many other elements in Z contain spectral components of interest, in addition to other
spectral components that are not of interest. Note however that these undesirable spectral components
may disappear, in some cases, when the pseudorandom component of the coded aperture is taken into
account. In fact, the pseudorandom structure of r can be designed to improve the measurement process as
described in Section 3.3.4. Figure 3.4 illustrates this observation where Fig. 3.4(a) depicts the elements in
Z which contain spectral components of interest, regardless of the value taken by r. Figure 3.4(b) depicts
the elements in Z which contain spectral components of interest only, when r is taken into account and
where r is a realization of a Bernoulli random variable with parameter p = 0.6. Note that the elements in
Fig. 3.4(a) form a subset of the elements in Fig. 3.4(b). Figure 3.4(c) illustrates the elements of interest
when r is a realization of a Bernoulli random variable with parameter p = 0.3. Note that as p decreases,
the number of elements in Z containing the bands of interest increases. It will be shown shortly that an
optimal p is obtained in the optimization of the codes. The entries in Z depicted in Fig. 3.4(a) are used
to form the vector g0. Next, a procedure to select the entries depicted in Fig. 3.4(b)-(c) which were not
already used in g0, is identified. Define the set of vectors λλλi` as

λλλi` = C(ΘΘΘT
L)i+1(w` ◦ r`) (3.37)
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Figure 3.4: Three different versions of the V × L matrix Z as the value of p decreases. The elements
available to construct the set of optimal measurements d0, . . . ,dU are shown in white squares representing
elements containing only the desired bands. (a) The pseudorandom component is not considered, p = 1.
The pseudorandom component is a realization of a Bernoulli variable with parameter (b) p = 0.6 and (c)
p = 0.3. In this example: L = 8, V = 280.

Table 3.2: Spectral Selectivity Equations Summary.

Size Complementary Equations

Vector of desired bands, λλλ L λεk = 1, 0 otherwise. ||λλλ||0 = L
Optimal weight apertures
wj = (ΘΘΘL)j+1C−1λλλ L K Linearly independent columns
Matrix of weights of Mw: wαj

Mw = [w0, . . . ,wL−1] L× L K = rank(Mw)
Optimized measurements

gj =
∑L−1
k=0 diag(njk)f̃k V {t̃j = uM′ ⊗ (rj ◦wj)}L−1

j=0

{t̃j}L−1
j=0 → {t̃

εk
j }
U−1,L−1
j=0,k=0

njk , (ΘΘΘV )εkI(t̃
εk
j )

f̃k , (ΘΘΘV )εkIfεk
Ensemble of measurements[
gT0 , . . . ,g

T
U−1

]T
=HHHb V × U

[
f̃0, . . . , f̃L−1

]
= ΨΨΨb

HHH =
[
HHHT0 , . . . ,HHHU−1

]T HHHj=
∑L−1
k=0 ([1, 0, . . . , 0]ΘΘΘ

εk
L )⊗ . . .

. . . diag(njk)ΨΨΨ; gj =HHHjb

for i = 0, . . . , V − 1 and ` = 0, . . . , L− 1, which indicates the spectral bands present in the (i, `)th entry
of the matrix Z. Using these vectors, the set of spectrally selective measurements {gj}K−1

j=1 is obtained
by forming the vectors gj as

(gj)i =

{
Zi` {∃` ∈ {0, . . . , L− 1} : λλλi` ∨ λλλ− λλλ = 0

0 otherwise
(3.38)

where 0 is a L-long zero valued vector and it is assumed that the elements of Z used to construct gj1
are not used to construct gj2 for j1 < j2. Notice that the number of linearly independent vectors in the
set {gj}K−1

j=0 is less or equal than K. Define the selectable parameter U as the number of the spectrally

selective measurements. Then, the set of selective measurements is limited to {gj}U−1
j=0 where U ≤ K. The

set of spectrally selective measurements {gj}U−1
j=0 in (3.36) and (3.38) can be interpreted as the output of

a modified CASSI system similar to that in (3.21), with the difference that each spectral image slice fk at
the kth wavelength, is coded by a different coded aperture t̃k. This process is different than that of the
traditional CASSI in (3.21) where each fk is coded by the same coded aperture t̃. Property 3 describes
the above characteristic in the modified CASSI.

Property 3 Given the set of spectral bands {fk}L−1
k=0 , the matrices ΘΘΘV and I in (3.3) and (3.17), the set

of weights {wj}L−1
j=0 in (3.33), the set of vectors {rj}L−1

j=0 representing realizations of a Bernoulli random

variable, and given the set of coded apertures {t̃j = uM ′⊗(rj ◦wj)}L−1
j=0 , the set of selective measurements
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{gj}U−1
j=0 can be expressed as

gj =

L−1∑
k=0

(ΘΘΘV )kI diag(t̃kj )fk (3.39)

where (t̃kj )i = (t̃`)i for some ` ∈ {0, . . . , L− 1}.

Proof: 2 Consider g0 first. Using (3.21) and observing that FPL;kuL = fk, and RW = diag(t̃i), the
measurements yj can be written as

yj =

L−1∑
k=0

(ΘΘΘV )kI diag(t̃j)fk (3.40)

for j = 0, . . . , L − 1. Observe that (3.40) is the traditional CASSI model where each spectral band fk is
coded by the same code t̃j. Using (3.40), the equality (g0)i = (ymodL(i))i in Property 2 can be written as

(g0)i =

(
L−1∑
k=0

(ΘΘΘV )kI diag(t̃modL(i))fk

)
i

=

L−1∑
k=0

(
(ΘΘΘV )kI diag(t̃modL(i))fk

)
i

=

L−1∑
k=0

(
diag(t̃modL(i))fk

)
i−k

=

L−1∑
k=0

(
t̃modL(i)

)
i−k (fk)i−k . (3.41)

Defining the L-long vectors t̃k0 as (t̃k0)i =
(
t̃modL(i)

)
i−k for k = 0, . . . , L − 1 and i = 0, . . . , V − 1, then

(3.41) can be written as (g0)i =
∑L−1
k=0

(
t̃k0
)
i
(fk)i−k =

∑L−1
k=0

(
(ΘΘΘV )kIfk

)
i

(
tk0
)
i
. Hence,

g0 =

L−1∑
k=0

(ΘΘΘV )kI diag
(
tk0
)
fk. (3.42)

Note that each spectral band fk in (3.42) is coded by a different equivalent coded aperture t̃k0 . Similar
expressions to that in (3.42) can be found for gj for j > 0 such that gj can be written in terms of t̃kj . In

these cases, the vectors t̃kj depend on the set of random components {rj}L−1
j=0 and thus a closed expression

as (3.42) is not available, however, they can be computed using (3.38).

The expression in (3.39) can be further simplified observing that the vector gj only contains information
from the L desired bands defined in (3.24) and indexed by the vector εj . Thus, the vectors gj can be
rewritten as

gj =

L−1∑
k=0

(ΘΘΘV )εkI diag(t̃εkj )fεk (3.43)

for j = 0, . . . ,K − 1. Define the vectors njk , (ΘΘΘV )εkI(t̃εkj ) and f̃k , (ΘΘΘV )εkIfεk , then gj in (3.43) can
be succinctly represented as

gj =

L−1∑
k=0

diag(njk)f̃k (3.44)

for j = 0, . . . ,U − 1. Notice that njk and f̃k in (3.44) are circular shifted versions of the vectors t̃εkj and

fεk respectively. The sparse representation of the ensemble of vectors f̃ =
[
f̃0, . . . , f̃L−1

]
is f̃ = ΨΨΨb. Then,

the vectors gj can be expressed as
gj =HHHjb (3.45)
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where HHHj=
∑L−1
k=0 ([1, 0, . . . , 0]ΘΘΘ

εk
L )⊗ diag(njk)ΨΨΨ. The ensemble of the vectors gj can be expressed as

 g0

...
gU−1

=

HHH︷ ︸︸ ︷ HHH0

...
HHHU−1

b.
(3.46)

3.3.4 Design of the Pseudo-Random Components

The minimum number of shots K given by (3.32) assumes that the pseudorandom component rj of the
coded aperture tj = wj ◦ rj remains fixed. It is shown here that the number of shots can be further
reduced if the pseudorandom component is optimized. The optimization is accomplished as follows. The
Hadamard multiplication of both sides of (3.29) by rj produces

rj ◦wj = rj ◦
(
(ΘΘΘL)j+1C−1λλλ

)
(3.47)

tj = Rj(ΘΘΘL)j+1C−1λλλ (3.48)

for j = 0, . . . , L− 1, where Rj = diag{rj}. Using (3.48), the matrix Mw in (3.31) can be generalized to
include the pseudorandom components as

Mt= [t0 . . . tL−1]

=
[
R0ΘΘΘLC−1λλλ,R1(ΘΘΘL)2C−1λλλ, . . . ,RL−1(ΘΘΘL)LC−1λλλ

]
.

The objective of the optimization of the set of pseudorandom vectors {r0, . . . , rL−1} is to minimize the
rank of Mt until a predetermined number of shots K ′ < K is obtained. Some constraints are necessary in
order to limit the search of the vectors rj . In our approach, we seek the vectors rj such that the CASSI
measurements better satisfy the Restricted Isometry Property (RIP) condition. The RIP is an important
condition for compressive measurements which guarantees the robust recovery of the sparse data cube
via l1 minimization [?, ?, ?].

Figure 3.5: Optimization of the coded aperture process. Given the vector λλλ, the optimization reduces
the rank of the matrix Mt containing the set {wj ◦ rj}L−1

j=0 where the varying terms are the vectors rj .
The optimization is constrained to satisfy the condition given in (3.50).

Property 4 Given a set of spectral bands of interest f̃ =
[
f̃0, . . . , f̃L−1

]
, their sparse representation

f̃ = ΨΨΨb, assume that |b| = S, given the matrix HHH defined in (3.46), the vectors njk defined in (3.44),
and the constants δc ∈ (0, 1) and ε ∈ [0.5, 1], then the probability

P
(
(1− δc) ‖ b ‖22≤‖ HHHb ‖22≤ (1 + δc) ‖ b ‖22

)
= 1− ε

is higher when the constraints ‖
∑U−1
j=0 njk‖0 ≥M , and

∑∑
k 6=`

∑U−1
j=0 nTjknj` = 0 for k, ` = 0, . . . ,L−1

are satisfied. Thus, if a CASSI model matrix HHH satisfied the above condition with probability 1− ε1 and
constant δc then that matrix can be optimized to satisfy the mentioned constraints such that the above
condition is satisfied for the same constant δc with probability 1− ε2 where ε1 ≥ ε2.
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The constraint ‖
∑U
j=0 njk‖0 ≥ M accounts for the necessary condition to reconstruct each spectral

band f̃k. The constraint
∑∑

k 6=`

∑U−1
j=0 nTjknj` = 0 accounts for the joint reconstruction of the complete

set of desired bands in the data cube f̃ . These two conditions are used as constraints in the optimization
of the pseudorandom terms of the coded apertures.

Note that the ith element of the vector n =
∑U−1
j=0

∑L−1
`=0 nj` represents the approximate number of

spectral bands sensed at the ith location at the detector. This approximation comes from the correlation
that exists among the vectors nj1` and nj2` for all ` and j1 6= j2. Hence, the third constraint in the
optimization is ni 6= 0 for i = 0, . . . , V − 1. The fourth constraint in the optimization is the mean
number µ∗ of spectral components present in each pixel measurement at the detector. The parameter
µ∗, referred as the optimal compressive ratio is a selectable term that indicates the average number
of spectral components in each pixel measurement, and thus µ∗ ≥ 1. The maximum mean number of
spectral component by pixel detector can be estimated as

µm =
ML
V

. (3.49)

where ML is the number of total variables and V is the number of effective pixel sensors in a line of the
FPA. The optimal compressive ratio parameter µ∗ range is thus [1, µm]. In general, the mean number of
spectral components by pixel can be estimated as: 1

V UuTV n, where uV is a one-valued V long vector.

Table 3.3: Iterative Stochastic Algorithm to solve (3.50).

Inputs λλλ, K′, U , Pr(.) is a random permutation, rk(.) = rank(.).

Initialize wi = (ΘΘΘL)i+1C−1λλλ, M = [w0, . . . ,wL−1],MMM = M,

B = {Bkj = Bernoulli(0.5) :
∑L−1
k=0 Bkj = 1 ∀j,∑L−1

j=0 ‖
∑L−1
j=0 Bkj ‖0= K′}.

Loop-1 While, rk(MMM) 6= K′, MMM = M ◦B. return to Main.

Loop-2A s = {sj ∈ {0, . . . , L− 1} :
∑L−1
i=0 Msji = 0}, z=Pr(s).

For j = 1, . . . , |z|; for (r,m) = 1, . . . , L; r 6= m

M′zjr = 1, M′zjm = 1,

If rk(MMM′) = K′,MMM =MMM′, ξ0 = 0 break;
ElseMMM′ =MMM.

return to Main.

Loop-2B s = {sj ∈ {0, . . . , L− 1} :
∑L−1
i=0 Misj = 0}, z=Pr(s).

For j = 0, . . . , |z− 1|; for (r,m) = 0, . . . , L− 1; r 6= m

M′rzj = 1, M′mzj = 1,

If rk(MMM′) = K′,MMM =MMM′, ξ1 = 0 break;

ElseMMM′ =MMM.

return to Main.

Loop-2C For 0, . . . , L− 1; x, y = UniformDiscrete(0, L− 1)

M′xy = 1,

If rk(MMM′) = K′,MMM =MMM′, ξ2 = 0, break;

ElseMMM′ =MMM.

return to Main.

Main While, S1<M ∨S2>0∨‖n‖0<V ∨ f >f∆∨rk(WWWTWWW) 6=K′

ξξξ = u3, Loop-2A, Loop-2B, Loop-2C;

Update nik,n, f = |µ∗ − 1
V U u

T
V n|,

Wkm =Mkαm k = 0, . . . , L− 1, m = 0, . . . ,K′ − 1.

If ‖ ξξξ ‖0= 3 then Loop-1.

Output OptimalMMM∗=
[
t∗0 . . . , t

∗
L−1

]
,WWW∗=

[
t∗α0

, . . . , t∗αK′−1

]
.

CCC =
(
WWW∗TWWW∗

)−1WWW∗MMM∗.

Given the vector λλλ, the respective set of weights {wj}L−1
j=0 , the desired number of shots K ′, the

desired number of optimal measurements U , the optimal compressive ratio µ∗, the optimization of the
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pseudorandom component of the coded apertures r0, . . . , rL−1 can be written as

min
{r0,...,rL−1}

|µ∗ −
1

V U
uTV n| (3.50)

Subject to

rank([w0 ◦ r0 . . . wL−1 ◦ rL−1]) = K ′,

‖
U−1∑
j=0

njk‖0 ≥M, ‖n‖0 = V

∑∑
k 6=`

∑
j

nTjknj` = 0 k, ` = 0, . . . ,L − 1

where the vectors njk representing shifted versions of the coded apertures are given in (3.44), and

n =
∑U−1
j=0

∑L−1
`=0 nj` represents the mean number of spectral bands sensed at the jth location at the

detector. A good range of µ∗ has been empirically obtained as [1.4, 2.0]. In addition to the constraints in
(3.50), the vectors r0, . . . , rL−1 are realizations of a random variable perturbed such that they satisfy the
constraints in (3.50). Figure 3.5 shows a flowchart of the optimization of the coded apertures. Solving
equation (3.50) is an NP hard optimization problem. A stochastic based algorithm is proposed to solve
(3.50) [?].

The objective of the algorithm in Table 3.3 is to find the matrixMMM∗ =
[
t∗0 . . . , t

∗
K′−1

]
which satisfies

rank(MMM∗) = K′, and the constraints given in (3.50). Further, the optimal matrix MMM∗ can be factor-

ized as a function of its K ′ linear independent columns WWW∗ =
[
t∗α0

, . . . , t∗αK′−1

]
as MMM∗ = WWW∗CCC where

CCC =
(
WWW∗TWWW∗

)−1WWW∗TMMM∗. The matrix WWW∗ contains an optimal row of coded apertures for spectral
selectivity.

The algorithm uses the L×L matrix B whose elements are random realizations of a Bernoulli variable,
further, K ′ rows of B have at least a nonzero element or the same rank(B) ≤ K′. The Loop-1 uses several
realizations of the matrix B to initialize the matrixMMM. The initial matrixMMM has both rank(MMM) = K′

and a very low Frobenius norm. In each iteration, the Main loop verifies that the constraints given
in (3.50) are satisfied. Then, the Main loop applies the loops Loop-2A, Loop-2B, and Loop-2C to
increase the Frobenius norm of the initial matrixMMM. The loop Loop-2A increases the Frobenius norm
of MMM by making two randomly chosen elements in a column of MMM equal to one. The loop Loop-2B
increases the Frobenius norm ofMMM by making two randomly chosen elements in a row ofMMM equal to one.
The loop Loop-2C increases the Frobenius norm by placing a one element in an arbitrary coordinate of
MMM. The loops Loop-2A, Loop-2B, and Loop-2C do not change the rank of MMM. Further, the Main
loop verifies that rank(WWWTWWW) = K′. The Frobenius norm of MMM is increased until that f is less than
some user defined constant f∆. If the loops Loop-2A, Loop-2B, and Loop-2C fail simultaneously to
increase the Frobenius norm of MMM, then the algorithm restarts at Loop-1. Notice that the algorithm
in Table 3.3 needs to be run N times to construct the complete 2-dimensional (2D) coded apertures. A
flowchart of the procedure to reconstruct the desired set of bands is shown in Fig. 3.6. The details of the
construction of the 2D coded apertures are explained in the next section.

Figure 3.6: Given K ′ 2D optimized coded apertures, K ′ CASSI measurements Yαj
are made. These

measurements are reordering to construct the spectrally selective measurements Gj . The GPSR algorithm

reconstructs only the desired bands. N unidimensional optimal codes {rαj
wαj
}K
′−1

j=0 are used to construct

the 2D codes {Tαj
}K
′−1

j=0 .
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Table 3.4: Comparison Between CASSI and Optimized CASSI

CASSI Optimized CASSI
Number of Shots K K′ ≤ K
Data Cube Size N ×M × L N ×M × L
Coded Aperture Constant, Tm Variable in each ith

for each mth shot band Tmi

Output, Gnk =

L−1∑
i=0

Fi,n,k+iTn,k+i

L−1∑
i=0

F ′i,n,k+iT
i
n,k+i

Measurements SizeN × (M + L− 1)×K N × (M + L − 1)U

3.4 Optimal 2-Dimensional Coded Apertures

Section III provided the coded aperture design for a single slice at the detector. Here, we extend these
concepts to the design of 2D coded apertures which are built by an ensemble of 1D coded apertures. The

nth execution of the algorithm in Table 3.3 provides the optimal vectors t
(n)
α1 , t

(n)
α2 , . . . , t

(n)
αK′ . The N ×K ′

set of vectors {t(n)
αk } are used to create the K ′ set of 2D coded apertures Tαk

which can be calculated by

(Tαk
)nj =

(
t(n)
αk

)
modL(j)

(3.51)

for n = 0, . . . , N −1, j = 0, . . . , V −1, and k = 0, . . . ,K ′−1. Let Gαk
be the 2D CASSI output when the

respective coded aperture Tαk
in (3.51) is used. Then, Yαk

is the 2D version of yαk
in (3.34). Similarly,

the matrices Yk representing the 2D version of yk in (3.34) can be estimated as

Yk =

K′−1∑
m=0

BmkYαm k = 0, . . . ,K − 1 (3.52)

where Bmk = diag
(
C(0)
mk, . . . , C

(N−1)
mk

)
, and the matrices CCC(n) are provided by the optimization algorithm.

Let the matrices Yk in (3.52) be expressed in terms of their columns as Yk =
[
yk0 . . .y

k
V−1

]
, then the

2D version G0 of the desired compressive measurement g0 in (3.36) containing only the bands of interest
is given by

G0 =
[
y0

0, . . . ,y
L−1
L−1,y

0
L, . . . ,y

modL(V−1)
V−1

]
. (3.53)

The remaining optimized matrices G1, . . . ,GU−1 are estimated using (3.38) and selecting the elements of
the matrices Yk in (3.52) containing exclusively the desired bands. Observe that the spectrally selective
measurement matrices Gm in (3.53) can be seen as the output of a multi-frame CASSI system sensing
an N ×M × L spectral data cube given by

F ′ijk = Fεijk i = 0, . . . ,L (3.54)

where εi indexes the desired bands. Further, the matrices Gm can be seen as the output of the system
whose input-output relation is given by

(Gm)jk =

L−1∑
i=0

F ′i,j,k+iT
mi
j,k+i + ωj,k (3.55)

where Tmi =
[
t̃
εi(0)
m t̃

εi(1)
m . . . t̃

εi(N−1)
m

]T
and t̃

εi(n)
m is the nth realization of the vector t̃εim defined in

(3.43). Table (3.4) summarizes the principal differences between a CASSI system using multiple shots
and the CASSI system with optimized coded apertures defined in (3.55).

3.5 Simulations

To test the methodology developed in Sections 3.3, and 3.4, a set of optimal aperture codes for two
different desired spectral band sets λλλ are derived, for an increasing number of measurement shots. The
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479nm 533nm

578nm 632nm

Figure 3.7: 4 spectral channels of 24 channels in the data cube used in the simulations are presented.
The complete data cube extends from 460nm to 680nm, and it has 24 spectral channels and 512 × 512
pixels of spatial resolution.

experiments use a test data cube FFF with 512× 512 pixels of spatial resolution and L = 24 spectral bands
ranging from 460nm to 668nm.2 Figure 3.7 shows a portion of the data cube used in the simulations.
The compressive sensing reconstruction is realized using the GPSR algorithm [?]. Sparsity basis selection
for hyperspectral signals has been widely studied in [?]. It is shown there that the Kronecker product
of 1D sparsity basis provides the highest compression ratio for hypersectral images. Here, the base
representation Ψ3D is the Kronecker product of three basis Ψ = Ψ1 ⊗ Ψ2 ⊗ Ψ3, where the combination
Ψ1 ⊗Ψ2 is the 2D-Wavelet Symmlet 8 basis and Ψ3 is the Cosine basis. Other Kronecker products such
as tridimensional wavelets can also be used, however, they requires that the underlying signal has dyadic
dimensions. The basis based on the Cosine Transform has the advantage of its low computational cost
compared with the tridimensional wavelet. Using the Kronecker representation the data cube in Fig.
3.7 can be represented with only 4% of the coefficients and preserving the 99.67% of the energy of the
signal. The maximum number of iterations in the GPSR algorithm is 50 and the stopping criterion as
recommended in [?] is the objective function.

3.5.1 Rank Minimization Algorithm

In the first experiment, the rank minimization algorithm is run for L = 24, λλλ = [461nm− 471nm,
641nm− 668nm], U = 3, K ′ = 12, µ∗ = 1.6. The minimization algorithm aims at reducing the rank
of the matrix Mt from 24 to 12. Figure 3.8(b) shows the error f = |µ∗ − 1

V UuTV n| of the minimization
algorithm through the iterations. There, it can be observed that the algorithm periodically aims at
minimizing the cost function, however, the algorithm restarts when the constraints in (3.50) are not
satisfied. This behavior of the algorithm is originated in the pseudorandom searching strategy.

In the second experiment, the optimization algorithm is run for several values of the parameter µ∗,
the other parameters are kept equal to the first experiment. For each µ∗ value the optimization algorithm
is run 512 times. Using the spectral data cube in Fig. 3.7 and the 512 realizations of the optimization
algorithm, the 2D spectrally selective measurements {G0,G1,G2} are constructed using the procedure
in Section 3.4. Using the spectrally selective measurements and the GPSR algorithm, the desired bands
are reconstructed and their mean PSNR is calculated. This experiment is repeated 50 times and the
PSNR is averaged. Figure 3.8(a) shows the averaged PSNR as a function of the parameter µ∗. From

2Data provided by Yuehao Wu and Iftekhar O. Mirza. Test objects provided by Andrew Arce.
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(a) (b)

Figure 3.8: (a) Performance of the rank minimization algorithm versus the µ∗ parameter, (b) a typical
performance profile through iterations of the rank minimization algorithm. The iterations where the
algorithm restarting are indicated with squares.

several simulations, it was found that regardless the value of L or L the optimal value of the parameter
µ∗ can be chosen as rule of thumb between 1.4 to 2.0. In practice, the lower the value of µ∗, the more
difficult it will be to achieve convergence of the optimization algorithm.

3.5.2 Spectral Selectivity

In the first experiment of spectral selectivity, the set of desired bands are set to λλλ1 = [461nm− 479nm,
641nm− 668nm] as it is depicted in Fig. 3.9(g). Figure 3.7 depicts a portion of the 24× 512× 512 data
cube used in the simulations. In this experiment, the initial rank of the matrix Mt is 24. Using the
optimization algorithm, the rank of the matrix Mt is minimized to 9, 12, and 18. The optimization uses
U = 3 and µ∗ = 1.6. The experiment is repeated 45 times and the mean PSNR is estimated. The resulting
spectral data cubes are shown as they would be viewed by a Stingray F-033C CCD Color Camera. Figure
3.9(a) shows the desired original bands. Figure 3.9(b) illustrates the results when the desired spectral
bands are reconstructed using 12 Bernoulli non-optimized random coded apertures measurements. In
this case, the 24 bands are reconstructed and the desired bands are manually selected. Figures 3.9(c)-(e)
show the results when 9, 12 and 18 optimized coded apertures are respectively used in the sensing and
reconstruction process. Notice that in this case only the desired bands are reconstructed. Figure 3.9(f)
shows a typical realization of the optimal coded aperture mentioned in (3.55). Figures 3.9(g), 3.9(h), and
3.9(i) show a zooming of the Figs. 3.9(a), 3.9(b), and 3.9(d) respectively. Clearly Fig. 3.9 depicts that
the optimal coded apertures conduce to a higher quality reconstruction. Additionally, Figure 3.10 depicts
the differences between the original and the reconstructed 3rd spectra channel (479nm). Reconstructions
artifacts in Figure 3.10 emerge in part from the cosine sparsifier in the spectral axis and in part from the
2D wavelet spatial sparcifier.

Table 3.5: Mean reconstruction PSNR in dB.
Number of shots 9 12 18

λ1 λ2 λ1 λ2 λ1 λ2

Bernoulli, min 25.02 26.25 26.08 27.13 27.32 28.12
mean 26.68 27.47 26.92 27.77 27.51 28.30

max 27.19 27.89 27.38 28.14 27.58 28.38
Hadamard, min 23.51 25.09 24.66 26.03 25.71 26.98

mean 25.50 26.53 26.15 27.13 26.99 27.85
max 26.68 27.37 27.04 27.83 27.38 28.19

Optimized, min 30.79 29.85 29.44 30.34 31.75 30.92
mean 30.91 30.09 31.02 30.81 31.79 31.21

max 31.01 30.27 31.13 30.96 31.84 31.32

In the second experiment, 9 desired bands are selected in the range given by λλλ2 = [488nm− 515nm,
560nm− 596nm]. In this case, the initial rank of the matrix Mt is 21. The optimization uses the same
values of U and µ∗ used in the first experiment. Again, the experiment is repeated 45 times and the PSNR
are averaged. Figure 3.11(a) shows the desired original bands. Figure 3.11(b) illustrates the results for
12 Bernoulli non-optimized random coded apertures. Figure 3.11(c) shows the results when 12 optimized
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

(j)

Figure 3.9: The resulting spectral data cubes are shown as they would be viewed by a Stingray F-033C
CCD Color Camera. The desired bands are depicted in (g). The original desired bands are shown in (a).
Reconstructed images by using : (b) 12 shots with random codes, (c) 9, (d) 12, and (e) 18 shots with
optimized codes. An optimized coded aperture used to reconstruct (c) is shown in (f). Zooming of (a)
(original), (b) (random codes), and (d) (optimal codes) are shown in (g), (h), and (i) respectively.

coded apertures are used in the sensing and reconstruction process. Figure 3.11(d) illustrates a typical
realization of the optimal codes. The simulations using random coded apertures were repeated using
Hadamard matrices, however the PSNR was similar to that of the Bernoulli case. Table 3.5 summarizes
the numerical results shown in Figs. 3.9 and 3.11. To indicate the consistency of the algorithm Table
3.5 shows the minimum, mean and maximum averaged PSNR of the 45 repetitions of the experiment.
The optimized results indicate improvements up to 4dB in the PSNR of the reconstructed data cubes
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(a) (b)

(c) (d)

Figure 3.10: Differences between the original and the reconstructed 3rd spectra channel (479nm) are
presented for (a) the reconstructed data cube in Fig. 3.9(b) (random codes) and (b) the reconstructed
data cube in Fig. 3.9(d) (optimized codes). A zoomed region of (a) and (b) are presented in (c) and (d)
respectively.

compared with the results of using random coded apertures.

(a) (b)

(c) (d)

(e)

Figure 3.11: The resulting spectral data cubes are shown as they would be viewed by a Stingray F-033C
CCD Color Camera. The desired bands are indicated in (e). The original desired bands are shown in
(a). Reconstructed images by using : (b) 12 shots with random codes, and (c) 12 shots with optimized
codes. An optimal coded aperture is illustrated in (d).
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3.6 Conclusion

A matrix representation of CASSI has been developed. The matrix model permits the optimal design
of weight coded apertures that can be used to build a set the spectrally selective compressive CASSI
measurements. A rank minimization algorithm was designed to estimate the pseudorandom component
of the coded apertures. The optimization of the coded apertures is subject to a specified number of shots
and the optimal coded apertures are designed to satisfy the RIP condition with high probability. Given
a set the desired bands, the PSNR achieved by the optimized codes is up to 4dB higher than the systems
using random codes.
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Chapter 4

Higher-Order Computational Model
for Coded Aperture Spectral
Imaging

4.1 Introduction

Typically, the discretized output at the CASSI detector gmn is modeled as the sum of the underlying
spectral voxel slices which have been previously modulated by a coded aperture and subsequently spatially
dispersed by a prism. More specifically, the two dimensional CASSI output has been traditionally modeled
as

gmn =

L−1∑
k=0

f(m−k)jkT(m−k)j , (4.1)

where fijk is the discretization of the underlying spatio-spectral power source density and Tij is the
discretized coded aperture. Notice that fijk in (4.1) is assumed to be a cubic voxel which impinges on a
single pixel detector element gmn. The analog sensing phenomena, however, is such that when a single
voxel of a scene is dispersed by the prism, it impinges on several detector elements at a time. This, in
turn, causes blurring which deteriorates the quality of image reconstruction. To ameliorate this problem,
instead of using the coded aperture Tij , a set of calibrated coded apertures {T kij}

L−1
k=0 are experimentally

measured and used in the reconstruction process to take into account the non-ideal optical blur and non-
linear dispersion [?]. Thus, the model in (4.1) suffers of a coarse approximation which is then partially
rectified by the coded aperture calibration process.

There are two drawbacks in this approach. First the calibration process is often inadequate such that the
discretized voxels fijk are incorrectly weighted by the calibrated codes T kij . The calibration errors orig-
inate principally from the assumption that a coded cubic voxel impinges on the detector when actually
it is a coded oblique voxel which impinges on it. Secondly, calibration of the coded apertures is difficult
for multiframe CASSI systems where a sequence of coded apertures are used sequentially. This Chapter
examines the sensing phenomena and determines a more precise computational model than that in (4.1).
The gains include less reliance of calibration procedures in the reconstruction, as well as higher quality of
image reconstruction. The higher-order model is tested through extensive simulations and experimentally
in a CASSI multi-frame testbed.

4.2 System Model

The CASSI optical architecture proposed in [?] is depicted in Fig. 4.1. Denote the spatio-spectral power
source density as f0(x, y, λ) where x and y index the spatial coordinates and λ indexes the wavelength.
The spatio-spectral image source density f0(x, y, λ) is firstly coded by a coded aperture T (x, y). The
resulting coded field f1(x, y, λ) is subsequently dispersed by a dispersive element before it impinges onto
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the FPA detector. The compressive measurements across the FPA are realized by the integration of the
field f2(x, y, λ) over the detector’s spectral range sensitivity. The spectral density at the output of the
dispersive element, can be expressed as,

f2(x, y, λ) =

∫ ∫
T (x′, y′)f0(x′, y′, λ)δ(x′ − (x− S(λ)))δ(y′ − y)dx′dy′, (4.2)

where δ(x′− (x−S(λ)))δ(y′− y) represents the optical impulse response of the system, such that S(λ) =
α(λ)(λ−λc) is the dispersion induced by the prism along the x-axis, which is centered at the wavelength
λc and has a dispersion coefficient α(λ). The resulting intensity image at the FPA is the integration of
the field f2(x, y, λ) over the detector’s spectral range sensitivity (Λ) that can be represented as g(x, y) =∫

Λ
f2(x, y, λ)dλ. Assuming ideal optical elements, the energy in front of the 2D FPA can be expressed as,

g(x, y) =

∫
Λ

T (x− S(λ), y) f0 (x− S(λ), y, λ) dλ. (4.3)

Using a first order discretization model [?, ?, ?], a CASSI measurement at the (m,n)th pixel is given
by, gmn =

∫ ∫
p(m,n;x, y)g(x, y)dxdy + wmn, where wmn represents additive noise and p(m,n;x, y) =

rect
(
x
∆ −m,

y
∆ − n

)
accounts for the detector pixelation, with ∆ being the detector pixel pitch. This ap-

proximation however is coarse leading to inter-pixel blurring in the detection. The goal of this Chapter is
thus to develop a more precise, higher order computational model that mitigates the inter-voxel interfer-
ence, which in turn leads to higher quality spectral imaging. At the same time, the higher-order precision
model allows less reliance on calibration corrections. To this end, the pixelation function p(m,n;x, y) is
replaced by defining the integration limits at the detector as,

gmn =

∫ (n+1)∆

n∆

∫ (m+1)∆

m∆

∫
Λ

T (x− S(λ), y)f0(x− S(λ), y, λ)dλdxdy, (4.4)

and the new discretization model is then derived as follows. The source f0(x, y, λ) is discretized as the
signal fijk where i, j, and k are the discrete indices accounting for x, y, and λ respectively. A voxel fijk
represents the intensity concentrated in a specific spatio-spectral region Ωijk where x ∈ [i∆, (i + 1)∆],
y ∈ [j∆, (j + 1)∆], and λ ∈ [λk, λk+1]. Specifically, the (ijk)th voxel is given by

fijk =

λk+1∫
λk

(j+1)∆∫
j∆

(i+1)∆∫
i∆

f0(x, y, λ)dxdydλ (4.5)

=

∫∫∫
Ωijk

f0(x, y, λ)dxdydλ = cijk · f0(xi, yj , λk),

where cijk represents the quadrature weight, and xi, yj , and λk are average values in Ωijk. Notice in
(4.5) that the spectral axis λ has been discretized in L spectral bands. The range of the kth spectral
band is [λk λk+1] where λk is the solution to the equation given by

S(λk)− S(λ0) = k∆, k = 0, . . . , L− 1, (4.6)

where again S(λ) = α(λ)(λ − λc) is the dispersion of the prism. Equation (4.6) establishes that the
spectral axis resolution is determined by the prism response S(λ) and by the pitch of the detector ∆.

Figure 4.1: Optical elements present in CASSI.
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Equation (4.5) also establishes the spatial resolution which is determined by the pitch of the detector ∆
that is assumed to be equal to the coded aperture pitch. Using the ranges of the L spectral bands defined
in (4.6), Eq. (4.4) can be expressed as

gmn=

(n+1)∆∫
n∆

(m+1)∆∫
m∆

L−1∑
k=0

λk+1∫
λk

T (x− S(λ), y)f0(x− S(λ), y, λ)dλ

dxdy. (4.7)

To better illustrate the discretization of the source, Fig. 4.2 depicts the physical phenomena described
in Eq. (4.7). Notice that each cubic voxel when sheared by the prism effects, turns into an oblique voxel.
The oblique voxel is stretched along the x axis, such that when it is projected onto the detector grid, it
impinges onto several detector pixel elements at once. Hence, several voxels at the source will impact
each of the FPA pixels.

Figure 4.2: CASSI integration model. A voxel of the data cube is coded by the aperture code, sheared
by the dispersive element with dispersion S(λk) and projected onto several pixels of the detector.

The inter-voxel interference is next examined by two discretization models as illustrated in Fig. 4.3,
when viewed from the top of the datacube. A linear dispersive function with slope equal to one (dS = 1)
is assumed in the figure. Figure 4.3(a) depicts the traditional discretization approach proposed in [?].
Figure 4.3(b) shows the higher precision discretization model where the FPA pixel detector captures en-
ergy from several voxels simultaneously. The dotted lines indicate the spatio-spectral region of the data
cube integrated in the (m,n)th detector pixel. It can be observed that the higher precision discretization

(a)	First	order	precision	model (b)	Higher	order	precision	model	
Figure 4.3: (Color online) (a) First order discretization model. A voxel impinges onto a single FPA pixel
detector; (b) higher order discretization model. A voxel impinges onto three FPA pixels. Notice that the
light dispersion path is on the (λ, x) axis (top view).
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of the dispersive curve leads to more voxels superimposing in the formation of gmn.

Figure 4.4 shows a zoomed version of one voxel of the source after it is sheared by the prism. No-
tice that its energy will impinge on up to three different FPA pixels when dS = 1. Each voxel at the
source can then be partitioned into three different regions denoted as R0, R1, and R2. Depending on the
nature of S(λ), a voxel may affect more than 3 detector elements. Therefore, for a general dispersion
curve, each of the integrals in (4.7) can be rewritten as

(n+1)∆,(m+1)∆,λk+1∫∫∫
n∆,m∆,λk

T (x−S(λ), y)f0(x−S(λ), y, λ)dλdxdy =

d∑
u=0

λk+1∫
λk

∫∫
{x−S(λ),y}∈Ru

T (x−S(λ), y)f0(x−S(λ), y, λ)dxdydλ, (4.8)

where d = dS+1 for linear dispersion, and d = maxd(m+1)∆−S(λk)e when a prism exhibits a non-linear
response. Further, let the discrete version of the aperture code T (x, y) be ti,j and using the representation
in Eq. (4.5) for f0(x, y, λ), then

λk+1∫
λk

∫∫
{x−S(λ),y}∈Ru

T (x−S(λ), y)f0(x− S(λ), y, λ)dxdydλ = wmnkut(m−k−u)nf(m−k−u)nk (4.9)

where the proportion of the voxel f(m−k−u)nk contained inRu is taken into account by the constant wmnku.
Notice that the subindex k in wmnku refers to the spectral interval [λk λk+1]. While the weights wmnku
can be estimated using a calibration process, they can also be numerically approximated assuming that
the the spectral information is uniformly distributed in the region delimited by Ωijk. More specifically,
they are calculated as

wmnku =

∫∫∫
Ru

dxdydλ


 ∫∫∫

Ω(m−k−u)nk

dxdydλ


−1

(4.10)

where Ru is taken in the respective interval [λk λk+1]. In practice, the sections Ru can be calculated
by estimating the prism response S(λ) and the misalignment between the coded aperture and the FPA
detector. Using Eq. (4.8) and (4.9), Eq. (4.7) can be expressed as

gmn =

L−1∑
k=0

d∑
u=0

wmnkut(m−k−u)nf(m−k−u)nk. (4.11)

Equation (4.11) can be written in matrix form as g = Hf , where the N(N +L+ d− 1) long vector g and
the N2L long vector f represent the compressive measurements and the spectral data cube respectively,

Figure 4.4: A voxel dispersed into the regions R0, R1, and R2 in each interval [λk λk+1]. These regions
determine the voxel fractions involved in the formation of the gm−1,n, gm,n and gm+1,n detector pixels.
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ordered lexicographically. When several FPA measurements are captured each one using a different
aperture code, the ith FPA measurement can be written as

gi = Hif . (4.12)

In Eq. (4.12) each N(N + L+ d− 1)×N2L matrix Hi is composed by,

Hi = PTi, (4.13)

where P accounts for the weights wmnku and the dispersion of the prism, and Ti represents the ith coded
aperture. Here Ti is a block-diagonal matrix of the form,

Ti =


diag(ti) 0N2 · · · 0N2

0N2 diag(ti) · · · 0N2

...
...

. . .
...

0N2 0N2 · · · diag(ti)

 , (4.14)

where ti is the ith aperture code in lexicographical notation and 0N2 is a N2 ×N2 zero-matrix. Notice
that Eq. (4.10) can be written in matrix form as, (Wu

k)mn = ωmnku, for m,n = 0, 1, . . . , N − 1, and k, u

as in Eq. (4.11). Then, the matrix P is given by P =
∑d
u=0 Pu, such that

Pu=



0Nu×N2L

diag(Wu
0 ) 0N×N2 · · · 0N×N2

0N×N2 diag(Wu
1 )· · · 0N×N2

...
...

. . .
...

0N×N2 0N×N2 · · ·diag(Wu
L−1)

0N(d−u)×N2L


. (4.15)

The ensemble of measurements {gi}Ki=1, can be succinctly written as ggg = H̃f = PTPTPT f , where ggg =[
gT1 , . . . ,g

T
K

]T
, PPP is a K-times block-diagonal matrix of P, and TTT =

[
TT

1 , . . . ,T
T
K

]T
, with K representing

the number of FPA shots. Figure 4.5 depicts the structure of the matrix H̃ for the first order and the
higher order discretization models, when three FPA shots are used to capture a 6× 6× 5 datacube.

4.3 Simulations

In order to compare the higher-order precision model with the traditionally used model, a hyper-spectral
data cube was experimentally acquired using a wide-band Xenon lamp as the light source, and a visible
monochromator. Monochromatic images were captured every 1nm in the spectral range {450 − 620};
thus 170 spectral planes were acquired. The image intensity was captured by a CCD camera AVT
Marlin F033B, with 656× 492 pixels, exhibiting a pixel pitch of 9.9µm and using 8 bits for pixel depth.
In addition, a double Amici prism was used as the dispersive element. Its non-linear dispersion curve
shown in Fig. 4.10(b) was determined experimentally by using the monochromator as the input of the
setup. Other elements such as the lens, the spectral response of the camera, and the coded apertures are
considered ideal. Deviations from the ideal characteristics of these elements are mitigated partially by
a calibration step. In this architecture, a voxel spanning any of the following wavelength intervals will
create a displacement of a pixel on the detector: {450 − 463}, {464 − 477}, {478 − 493}, {494 − 510},
{511− 530}, {531− 556}, {557− 586} and {587− 620} where all the intervals are given in nanometres.
Thus, the 170 spectral planes of the datacube will be clustered into 8 bands. Notice that the intervals
width are not constant, as a non-linear dispersive element was used. Figure 4.6 shows the eight spectral
bands of the datacube, which the CASSI system aims at recovering.

Experiments use the multi frame CASSI setup described in [?], and simulation algorithms utilizes
64 bits as arithmetic precision. Aperture codes entries are random realizations of a Bernoulli random
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(a)	First	order	discretization	model (b)	Higher	order	discretization	model

Figure 4.5: Structure of the matrix H̃ for a N = M = 6, L = 5 datacube, when K = 3 for (a) CASSI
traditional model (H̃ ∈ R180×180); (b) Higher order CASSI model (H̃ ∈ R180×180). Extra diagonal terms
account for the inter-voxel interference. Notice that entries in (a) are either 0 or 1, while in (b) they vary
in the interval [0, 1].

486nm457nm 471nm 503nm

521nm 544nm 572nm 604nm

Figure 4.6: Spectral bands used in the simulations and their central wavelength.

variable with parameter p = 0.5. Note that the proposed model uses the same pitch for coded aperture
features and FPA pixels. In summary, the hyper-spectral test data cube F has 256× 256 pixels of spatial
resolution and L = 8 spectral bands in the range 450 nm to 620 nm. In order to simulate the analogous
sensing process, the compressive measurements are obtained using the 170 spectral planes of the dat-
acube, as shown in Fig. 4.3(b). Notice also that the reconstruction process aims to recover the average of
the spectral information in the 8 mentioned spectral intervals. The calibration weights for the proposed
model are approximated using Eq. 4.10 and the prism’s response curve. Given the set of compressive
measurements, the voxels’ weight distribution and the set of coded apertures, the hyper-spectral dat-
acube is recovered using the GPSR algorithm [?]. GPSR exploits the sparse nature of the hyperspectral
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datacube. In particular, the hyperspectral signal F ∈ RN×M×L, or its vector representation f ∈ RN.M.L,
are assumed to be K−sparse on some basis ΨΨΨ3D, such that f = ΨΨΨ3Dθ, where θ are the coefficients of the
sparse representation. Hence, f can be approximated by a linear combination of K vectors from ΨΨΨ3D with
K � (N.M.L). Specifically, this algorithm estimates a hyperspectral datacube f̂ by solving the optimiza-
tion problem, f̂ = Ψ3D{argminθ′‖ggg −PTPTPTΨ3Dθ

′‖22 + τ‖θ′‖1}, where τ > 0 is a regularization parameter
that balances the conflicting tasks of minimizing the least square of the residuals, while at the same time,
it seeks for a sparse solution The basis representation ΨΨΨ3D is set as the Kronecker product of three basis
ΨΨΨ3D = ΨΨΨ1 ⊗ΨΨΨ2 ⊗ΨΨΨ3, where the combination ΨΨΨ1 ⊗ΨΨΨ2 is the 2D-Wavelet Symmlet 8 basis and ΨΨΨ3 is the
Discrete Cosine basis. The reconstructions are performed using the new model in Eq. (4.11), and the
traditional model in Eq. (4.1) with its respective calibration process described in [?]. The regularization
parameters needed in the compressive sensing reconstruction algorithm are carefully selected such that
each simulation uses the best selectable parameter. Figure 4.7 depicts the reconstructed spectral bands
(zoomed area) when 6 shots are captured for the model in (4.1). Figure 4.8 illustrates the reconstruction
of the same spectral bands (zoomed area) when the same number of shots are used in the new model. It
can be observed that the new model recovers the spectral information with higher accuracy.

Figure 4.7: Reconstruction using the traditional CASSI model and the corresponding attained PSNR.
The average PSNR across the 8 bands is 22.3 dB.

Figure 4.9 shows the PSNR of the reconstructions for the two models as function of the measurement
shots. The gain achieved by the new model is quantitatively noticeable by averaging the PSNR of the
recovered datacubes. This improvement approaches to 4 dB when more than two FPA shots are used.

4.4 Experimental results

The testbed shown in Fig. 4.10(a) is used to implement the CASSI system and to verify the simulation
results [?]. It is formed by two subsystems: the first composed by the illuminated target, the objective
lens and the DMD; the second by the imaging lenses, the band pass filter, the dispersive element, and
the CCD camera. The target is illuminated by a white light source and its reflected light is captured
by the objective lens which focuses the light onto the DMD plane, which plays the role of the coded
aperture. Afterwards, the reflected light from the DMD is focused by the imaging lenses into the prism
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Figure 4.8: Reconstruction using the higher order CASSI model and the corresponding attained PSNR.
The average PSNR across the 8 bands is 26.85 dB
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Figure 4.9: Averaged PSNR of the reconstructed datacubes as function of the number of FPA shots. The
traditional and the higher order precision models are compared.

imaging plane that disperses the filtered light onto the CCD camera which integrates the underlying 3D
hyperspectral image in the 2D FPA.

The testbed setup is characterized in order to reduce the impact of non-linearities, non-uniformities, and
external noise artifacts. This process is realized as follows: (a) The light source intensity distribution and
the FPA spectral sensitivity are characterized by experimentally analyzing their spectral responses using
a USB2000+VIS-NIR Ocean Optics spectrometer with a known spectral response. These non-uniform
spectral response curves are taken into account to reduce their impact in the measurement shots; (b) for
each one of the 170 captured spectral planes, 10 FPA measurements are captured and averaged to reduce
the impact of shot and readout noise; (c) the CCD exposure time is setted to 100 microseconds, in order
to improve the signal-to-noise-ratio of the aperture code at each wavelength; (d) the dispersive element is
characterized in order to take into account its non-linear response curve and the resultant bandwidth of
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(a)	CASSI	testbed	setup (b)	Non-linear	response	of	the	Amici	prism

Figure 4.10: (a) The CASSI testbed setup and its six optical elements: objective lens, DMD, imaging
lenses, band-pass filter, prism and CCD; (b) non-linear dispersion response of the Amici prism between
{450− 620}nm.

each spectral band. After characterization of the testbed and in order to observe the oblique voxel effect
impinging into the FPA as explained in Fig. 4.3, a measurement shot is captured using monochromatic
light at 502 nm as the input of the system. The resultant measurement is depicted in Fig. 4.11.

Figure 4.11: FPA measurement at 502 nm. The coded aperture (upper-left) is used in order to isolate
the effect of a single voxel impinging onto the FPA (upper right). A zoomed version of a single FPA
pixel shows the measured intensity taken into account for each of the discretization models. The energy
classified as noise and blur by the first order and the higher order models, is shown.

This measurement is taken using a test coded aperture with enough space (3 ‘off’ features) between
each ‘on’ feature, thus, allowing the isolation of the effect of a single voxel impinging onto the FPA. Then,
a zoomed version of a single FPA pixel is analyzed. Firstly, it can be confirmed that energy belonging
to a single datacube voxel impinges principally in a single FPA pixel (m,n)th, and a smaller portion is
projected into its neighbors (m − 1, n)th and (m + 1, n)th. Second, the first order model accounts only
for the energy impinging on the principal pixel, discarding the energy around it, or classifying it as noise
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Figure 4.12: Objects in scene used in the experimental comparison

Region
Band

1 2 3 4 5 6 7 8
R0 0.30 0.27 0.27 0.26 0.26 0.25 0.24 0.24
R1 0.42 0.46 0.46 0.49 0.52 0.55 0.56 0.56
R2 0.28 0.27 0.27 0.25 0.22 0.20 0.20 0.20

Table 4.1: Weights Ri and their distribution across spectral bands

or blur. The energy discarded by the first order model, is taken into account in the higher order model
by the weights wmnku. Notice that the energy considered as noise and blur by the traditional CASSI is
leveraged by the use of a calibration cube at the reconstruction stage, while the proposed model finds
the weights distribution in an off-line process. Then, the proposed higher-precision computational model
becomes more suitable for reconfigurable multi-shot CASSI where multiple coded apertures are used se-
quentially.

For experimental purposes, the objective scene used is depicted in Fig. 4.12. The coded apertures
are realizations of a Bernoulli random variable with p = 0.5, realized by a DMD as explained in [?]
exhibiting 128× 128 pixels. The dispersive element is an Amici prism exhibiting the non-linear response
shown in Fig. 4.10(b). To match with the pitch of the coded aperture features and accounting for the
dispersion process, 128× 136 pixels of the CCD are required. The weight distribution extraction is per-
formed using Eq. (4.10). As a result, three 128 × 128 × 8 weight datacubes were obtained, each one
accounting for the regions R0, R1 and R2 as described in Fig. 4.4. By averaging each weight datacube
per band, a succinctly version can be shown in Table 4.1. Notice that when misalignments between the
coded aperture and the FPA occur, the weights distributions may vary along the regions.
The GPSR algorithm is employed in the reconstruction of the underlying hyperspectral scene, with pa-
rameters as described in the simulations section [?]. Figure 4.13 depicts the 8 reconstructed spectral
bands for 6 shots when the models in Eq. (4.1) and Eq. (4.11) are used. Here, the higher quality recon-
struction obtained when the proposed model is used in the simulations section is confirmed. Notice that
the test object intensity spans principally along the last four bands, and the reconstruction quality of the
proposed model overcomes the one from the traditional CASSI model. In particular, the improvement
can be clearly noticed in the fifth band (524 nm), where the higher-order CASSI estimates a better shape
of the face, compared with the same band from the traditional CASSI. Furthermore, the improved results
can also be noticed in the spectral signatures of two particular points (P1 and P2 in Fig. 4.12) depicted
in Fig. 4.14. The resulting reconstructed datacubes curves are compared against their respective ground
truth curves measured by the use of the commercial spectrometer.

It is important to point out here, that the simulations setup differs from the experimental setup in the
following aspects: The former performs the CASSI and higher-order CASSI FPA measurements starting
with a hyperspectral datacube captured off-line and taken as the ground truth. The coded apertures as
well as the non-linear prism dispersion curve are simulated, and the weights distribution (wmnku) given
by Eq. (4.10) are then synthetically obtained. Noise, as well as blur and misalignment between the
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coded aperture and the CCD were not added to the model. It can be assumed that this is the ideal case
scenario. The latter uses the experimental testbed depicted in Fig. 4.10(a) to capture the FPA mea-
surement shots. The same fluorescent white illumination source was employed for both cases. However,
in the experimental results, the FPA measurements are contaminated by optical aberrations, as well as
noise and misalignment between the CCD and the coded aperture. Consequently, the weights distribu-
tion (wmnku) presented in Table. 4.1, is experimentally obtained from the non-linear prism dispersion
curve depicted in Fig. 4.10(b), which is characterized by the use of a monochromatic light source as the
input of the testbed ranging between 450nm and 650nm. The reconstruction algorithm utilized (GPSR)
is equal for both simulations and experimental results, but differs for each compared model (CASSI vs
Higher-Order CASSI). The objects used as targets in the simulation section differs from the one used
in the experimental setup. Due to field of view restrictions in the optical instruments, a smaller but
spatially richer scene was selected for the latter.

4.5 Conclusions

A higher order precision discretization model for coded aperture-based spectral imaging systems has been
developed. This model accounts for the inter-voxel projections onto each pixel detector which is disre-
garded by the first order discretization model. This, in turn, allows for the reconstruction of hyperspectral
signals with higher PSNR. Simulations achieve a 4 dB improvement, while testbed experiments visually
confirm the simulations results. The proposed model is less-dependent on time-demanding calibration
processes, thus leading to multiple-frame CASSI systems to be more suitable for real applications.
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(a)	CASSI

(b)	Higher-order	CASSI

Figure 4.13: Reconstruction of the 8 spectral bands using (a) the traditional CASSI model, and (b) the
proposed higher-order CASSI model.
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(a)	Red	point	(P1	in	Fig.	12) (b)	Yellow	point	(P2	in	Fig.	12)
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Figure 4.14: Spectral signatures comparison from given points in Fig. 12.
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Chapter 5

Compressive Hyperspectral Imaging
Testbed

In this chapter, we present a dispersive optical element-based approach for building a CS-HSI system.
This system has a compact optical/mechanical architecture, along with a higher efficiency in utilizing
the DMD reflected imaging irradiance and therefore, spectral images can be concurrently reconstructed
from this system. Additionally, the acquisition of spatial/spectral image cubes using the CS-HSI system
is free from mechanical or temporal scanning processes and thus this acquisition process virtually does
not cause any time penalty.

5.1 Coded Aperture Snapshot Spectral Imaging System

Conventional spectral imaging systems usually rely on some mechanical or temporal scanning processes
to acquire the complete spatial/spectral information of an imaging scene [49]. The time penalty caused
by the scanning process unavoidably undermines the performance of spectral imaging systems in low light
or high speed imaging applications. To circumvent the scanning process, the so-called Coded Aperture S-
napshot Spectral Imaging (CASSI) system was developed [50-53]. Figure 5.1 shows the schematic drawing
of the CASSI system. CASSI systems usually use photomasks to implement CS measurement patterns.

Figure 5.1: Schematic drawing of the CASSI system.

Binary random patterns are widely used as CS measurement patterns in such systems. The photomask
is installed on the image plane of an imaging lens such that intensities of optical images formed on the
photomask can be modulated by the CS measurement pattern coated on it. In this process, the continu-
ous spatial information of the optical image is pixelated into an array of square pixels by the photomask.
In the following discussion, we use f(m′, n′, k) to represent the spatial/spectral information of the optical
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image formed on the photomask, and use t(m′, n′) to represent the CS measurement pattern. The coor-
dinates m′ and n′ are used to locate a pixel on the photomask (m′ = 1, 2, . . . ,M ′ and n′ = 1, 2, . . . , N ′).
The coordinate k is used to describe the location of a spectral image in the wavelength (λ) direction of the
image cube (k = 1, 2, . . . ,K). The spatial/spectral information of the original optical image after being
modulated by the CS measurement pattern can be represented as: o(m′, n′, k) = f(m′, n′, k)t(m′, n′). A
relay lens is used to transfer the modulated image intensity from the photomask onto a CCD camera.
In between the exit aperture of the relay lens and the CCD camera, an optical dispersive element (such
as a prism) is used to spatially separate the spectral components of the modulated image intensity. In
other words, a spectrally dispersed image of the modulated image intensity is formed on the CCD cam-
era, which represents a set of CS measurement results for the original image cube. We use g(m,n) to
represent that spectrally dispersed image, where (m,n) is the coordinate system used to locate a pixel on
the optical plane where the CCD camera is installed. If the magnification of the relay lens/double-Amici
prism structure is A, we have m = Am′ and n = An′. In following discussions, we assume A = 1.

In [53], optical operations realized by the CASSI system were described as punch, shear, and smash.
Figure 5.2 provides an illustrative explanation for those optical operations. In Fig. 5.2, we only show
three spectral channels in the original image cube, including a red channel, a green channel, and a blue
channel. The spatial shift of different spectral channels caused by the prism happens only in the x direc-
tion on the CCD camera plane and we call that direction the dispersion direction of the CASSI system.
Also in Fig. 5.2, the green spectral channel is spatially shifted from the red channel by 1 CCD pixel
to the right in the dispersion direction, and the blue channel is shifted from the red channel by 2 CCD
pixels to the right.

Figure 5.2: Optical operations realized by the CASSI system.

The first optical operation realized by the CASSI system is called punch, wherein closed apertures in
the photomask punch the spatial/spectral information away from the original image cube in corresponding
pixel locations. The second operation is called shear, wherein different spectral components of the punched
image cube are spatially separated from each other along the dispersion direction, due to the dispersion
performance of the prism. The last optical operation is called smash, wherein the continuous information
of the sheared image cube is digitally sampled and collected by a CCD camera. Those optical operations
were modeled as a system transfer function H in [51-53]. If we use g to represent the spectrally dispersed
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image captured by the camera, the image formation process of the CASSI system can be modeled as:

g = Hf. (5.1)

5.2 Transfer Matrix of the CASSI System

In Fig. 5.2, we note that the intensity of the CS measurement result g at the pixel location (m,n) equals
to the intensity of the first spectral channel (k = 1) of the modulated image intensity at the pixel location
(m,n) plus the intensity of the second spectral channel (k = 2) at the pixel location (m,n− 1), plus the
intensity of the third spectral channel (k = 3) at the pixel location (m,n− 2), and so on. Following this
logic, for an M ×N ×K image cube, the CS measurement result generated from the CASSI system can
be represented as:

g(m,n) =


∑n
k=1 o(m,n− k + 1, k), if 1 ≤ n ≤ K − 1∑K
k=1 o(m,n− k + 1, k), if K ≤ n ≤ N∑K
k=n o(m,n− k + 1, k), if N + 1 ≤ n ≤ N +K − 1

(5.2)

where o(m,n−k+ 1, k) = f(m,n−k+ 1)t(m,n−k+ 1). To determine the system transfer matrix H, we
transform the 2D and 3D data arrays in Eq. 5.2, which are g and o, respectively, into 1D vector forms by
concatenating their column vectors. In their 1D vector forms, g has M × (N +K − 1) data entries and
f has M ×N ×K data entries. Thus, the transfer matrix H has a pixel dimension of M × (N +K − 1)
by M ×N ×K, which is a rectangle with an aspect ratio smaller than 1. We define the aspect ratio of
the transfer matrix to be the down-sampling ratio of the CASSI system, which is denoted as RCASSI in
this work, and we have:

RCASSI =
M × (N +K − 1)

M ×N ×K
=
N +K − 1

N ×K
. (5.3)

Apparently, the down-sampling ratio decreases with the increment of the number of spectral channels
in the image cube. In their 1D vector representations, the pixel location (m,n) in g becomes the ((n −
1)M +m)th data entry and the pixel location (m,n, k) in f becomes the ((k− 1)MN + (n− 1)M +m)th

data entry. The pixel location (m,n− k + 1, k) in f becomes the ((k − 1)MN + (n− k)M +m)th data
entry. If we use the 1D coordinate ((n − 1)M + m) to replace the 2D coordinate (m,n) in Eq. 5.2, use
((k − 1)MN + (n− 1)M +m) to replace (m,n, k) and let z = (n− 1)M +m, which represents the pixel
index in the 1D form of the CS measurement result g, the center term of Eq. 5.2 can be modified as:

g(z) =

K∑
k=1

o((k − 1)MN + (n− k)M +m)

=

K∑
k=1

o((k − 1)MN + nM − kM +m)

=

K∑
k=1

o((k − 1)MN + nM −M +M − kM +m)

=

K∑
k=1

o((k − 1)MN + z − (k − 1)M), (5.4)

which is valid when (K − 1)M + 1 ≤ z ≤ NM . Similarly, the top term in Eq. 5.2 can be modified as:

g(z) =

d z
M e∑
k=1

o((k − 1)NM + z − (k − 1)M), (5.5)

which is valid when 1 ≤ z ≤ (K − 1)M. d zM e represents the ceiling function of z
M . The bottom term in

Eq. 5.2 can be modified as:

g(z) =

K∑
d z
M e

o((k − 1)NM + z − (k − 1)M), (5.6)
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which is valid when MN + 1 ≤ z ≤M(N +K − 1).

The explicit expression of the transfer matrix H can be derived from Eq. 5.4 through Eq. 5.6. Here
we use a simple example to demonstrate the derivation process, where we consider a small image cube
which has M = N = 3 and K = 3. The CS measurement pattern t has a pixel dimension of 3 × 3, and
the CS measurement result g has a pixel dimension of 3×5. In their 1D vector forms, t and g have 9 and
15 data elements, respectively. When, 1 ≤ z ≤ 6, Eq. 5.5 should be used. When z = 1, d zM e = 1 and we

have g(1) =
∑1
k=1 = o((k− 1)NM + 1− (k− 1)M) = o(1) = t(1)f(1). Similarly, we have g(2) = t(2)f(2)

and g(3) = t(3)f(3). In other words, data entries in pixel locations of (1,1), (2,2), and (3,3) in the
transfer matrix H are t(1), t(2), and t(3), respectively. The last are the first three data entries in the
1D vector form of the CS measurement pattern. When z = 4, also from Eq. 5.5, d zM e = 2 and we have

g(4) =
∑2
k=1 o((k − 1)NM + 4− (k − 1)M) = o(4) + o(10) = t(4)f(4) + t(10)f(10). t(10) represents the

intensity modulation implemented on the first pixel location of the second spectral channel in the original
image cube. Since in the punch process, the same CS measurement pattern was used to implement the
intensity modulation on all the spectral channels of the original image cube, the intensity modulation
implemented on the first pixel location in the second spectral channel equals to the intensity modulation
implemented on the first pixel location in the first spectral channel and thus t(10) = t(1). Similarly, we
have g(5) = t(5)f(5) + t(2)f(11), and g(6) = t(6)f(6) + t(3)f(12). In other words, data entries in pixel
locations of (4,4), (4,10), (5,5), (5,11), (6,6), (6,12) in the transfer matrix are t(4), t(1), t(5), t(2), t(6),
and t(3) respectively. Other data entries in the transfer matrix can be derived in a similar manner and
the resulted transfer matrix H is shown in Fig. 5.3. The values of those empty entries in this transfer
matrix are all 0.

Figure 5.3: Transfer matrix of the CASSI system for an M = N = K = 3 image cube.

For an M ×N ×K image cube, the transfer matrix looks like this:
We can see that from row (K−1)M+1 to row NM , each row in the transfer matrix contains a random

data sequence that has K data entries. For rows 1 to (K−1)M and rows MN+1 to M(N+K−1), each
row in the transfer matrix contains a random data sequence that has d zM e and K − d zM e data entries,
respectively, where z represents the row number of the H matrix, which is identical to the row number of
the CS measurement result g. As such, each row in the transfer matrix H implements a random intensity
modulation (random sampling) on the original image cube f , and each pixel in the spectrally dispersed
image g represents a CS measurement result for f . In CASSI systems, random sampling processes are
implemented on the 3D spatial/spectral image cube of optical images. We utilized a Two Step Iterative
Shrinkage/Thresholding (TwIST) algorithm to solve the image reconstruction problem, which considers
the following Total Variation (TV)-regularized minimization problem [51-54]:

argminf∈RN ‖g −Hf‖22 + τTV (f), (5.7)

where τ is a regularization parameter for the Total Variation regularizer TV(f), which is defined as:

TV (f) =
∑
k

∑
m,n

√
(f(m+ 1, n, k)− f(m,n, k))2 + (f(m,n+ 1, k)− f(m,n, k))2. (5.8)
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Figure 5.4: Transfer matrix for an M ×N ×K image cube.

5.3 Simulations

We simulated the punch, shear, and smash operations of the CASSI system in the simulation setting (we
used Matlab as the simulation tool) and used the TwIST algorithm to reconstruct the original image
cube based on the simulated CS measurement results. In this simulation, a 256× 256× 24 data cube was
used as the imaging target, which is shown in Fig. 5.5(a).

Figure 5.5: (a) Spatial/spectral image cube of the simulation target. (b) RGB image of the simulation
target. (c) Optical image of the simulation target.

Figures 5.5(b) and (c) show an RGB image and an optical image of the simulation target. The RGB
image was generated by using the 454 nm, 550 nm, and 621 nm spectral channels to represent the blue,
green, and red colors in the RGB data format. In the RGB image, we can see that this simulation target
is composed of some red and green tomatoes. The optical image is the intensity combination of all the
24 spectral channels of the image cube. In Fig. 5.6, we show the normalized intensity variations of two
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pixel locations in the image cube, which are labeled as the red spot (y=36, x=206) and the green spot
(y=222, x=122) in Fig. 5.5(b). The red spot is located on a red tomato and the green spot is located on
a green tomato. Those intensity variations can be considered as the spectral curves of the imaging target
at those two pixel locations. For the red spot, the spectral curve has an intensity peak at the spectral
channel 20, which represents a wavelength of 607 nm. For the green spot, there is an intensity peak at
the spectral channel 14, which represents a wavelength of 538 nm.

Figure 5.6: Spectral curves measured at the red spot and the green spot on the imaging target.

A 256 × 256 binary random pattern was used to implement the CS measurement process, which is
shown in Fig. 5.7(a). In this CS measurement pattern, half of its pixels are set in the on condition and
thus we say this pattern has an on pixel percentage of 50%. The CS measurement result generated with
this random pattern is shown in Fig. 4.7(b), which was fed into the TwIST algorithm for reconstructing
the original image cube. In this simulation, we assume the spectral dispersion caused by the prism
happens only in the horizontal direction on the CCD camera plane and adjacent spectral channels are
spatially separated by 1 pixel. Therefore, the CS measurement result has a pixel dimension of 256× 279.
In the TwIST algorithm, we set the regularization parameter τ to be 0.1 and the number of optimization
iterations to be 100. The image reconstruction took about 650 seconds using a DELL desktop (model:
precision 690) installed with Windows XP 32 bit operation system and 4GB memory.

Figure 5.7: (a) A 256 × 256 CS measurement pattern. (b) Simulated CS measurement result for the
image cube shown in Fig. 5.5(a).

Figure 5.8(a) shows the reconstructed image cube. Figures 5.8(b) and (c) show the RGB image and
the optical images of the reconstructed image cube.
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Figure 5.8: (a) Reconstructed image cube. (b) RGB image of the reconstructed image cube. (c) Optical
image of the reconstructed image cube.

In Fig. 5.8(a), we can see that the red tomatoes in the imaging target were reconstructed with strong
intensities in red spectral channels (595 nm to 637 nm) and green tomatoes were reconstructed with
strong intensities in green spectral channels (529 nm to 582 nm). The PSNR value of the reconstructed
optical image is 17.36 dB. In Fig. 5.9, we show normalized intensity variations of the reconstructed image
cube at the red spot and the green spot (solid lines). Those intensity variations can be considered as
the reconstructed spectral curves at those two pixel locations. Also in Fig. 5.9, spectral curves of the
original image cube are shown in dotted lines. We can see that the reconstructed spectral curves have
pretty good matches to the original ones. The Mean Square Errors (MSEs) of the deviations from the
reconstructed spectral curves to the original spectral curves are 0.017% and 0.027% for the red and green
spots, respectively.

5.4 DMD-based CASSI System

Conventional CASSI systems use photomasks to implement CS measurement patterns. In such system-
s, the pattern replacement process is a very time-consuming process. A new photomask needs to be
lithographically fabricated and the entire system needs to be re-aligned after the installation of the new
photomask. To expedite the pattern replacement process, we propose using a DMD to implement CS
measurement patterns. As such, new patterns can be implemented without optical and/or mechanical
modifications to the system. More importantly, the DMD provides a virtually unlimited selection pool
for CS measurement patterns, such that patterns of different designs can be grouped to realize various
Multi-Shot CS (MS-CS) measurement processes, which, as will be demonstrated in the following section-
s, can effectively enhance the quality of the reconstructed image cubes [52,55]. Figure 5.10 shows the
schematic drawing of the DMD-based CASSI (DMD-SSI) system.

As can be seen in Fig. 5.10, the DMD-SSI system can be considered as a two- arm system, including an
imaging arm and a relay-dispersion arm. In the imaging arm, a DMD is installed on the image plane of an
imaging lens, which imposes intensity modulations on optical images formed on it. In the relay-dispersion
arm, image intensities modulated by DMD patterns are collected into a relay lens/double-Amici prism
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Figure 5.9: Spectral curves measured at the red spot and the green spot in the reconstructed image cube
(solid lines) and spectral curves measured at those two locations in the original image cube (dotted lines).

Figure 5.10: Schematic drawing of the DMD-SSI system.

structure. On the image plane of that relay lens/double-Amici prism structure, where a CCD camera is
installed, spectrally dispersed images of the modulated image intensities are formed. Those spectrally
dispersed images represent different sets of CS measurement results for the original image cube. Each on
pixel on the DMD mirror plane results in a dispersion band on the CCD camera and CS measurement
results are essentially intensity combinations of dispersion bands at different spatial locations on the
CCD camera. The construction of the imaging arm of the DMD-SSI system is straightforward, which
only involves using an imaging lens to form optical images on the DMD mirror plane. The construction
of the relay-dispersion arm of the DMD-SSI system is more complicated than the imaging arm. Figure
5.11(a) shows the Zemax ray tracing model of the relay-dispersion arm installed in our DMD-SSI system.
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Figure 5.11: (a) Zemax ray tracing model for the relay-dispersion arm of the DMD-SSI system. (b)
Optical design of the double-Amici prism. (c) Manufactured double-Amici prism and its mechanical
holder.

In this setup, we used a pair of visible achromatic lenses (Thorlabs, stock number: AC254-100-A-
ML) to realize the functionality of optical relay. The double- Amici prism was installed in between the
exit aperture of the relay lens and the CCD camera. Figure 5.11(b) shows the optical design of the
double-Amici prism, which is composed of three wedge prisms including a high dispersion wedge prism
sandwiched in between two low dispersion ones. The angles and thicknesses of the three wedge prisms
were optimized such that the wavelength component of 550 nm of the DMD reflected light can go through
the double-Amici prism without angular or spatial deviations from the optical axis. Other wavelength
components suffer from different levels of angular deviations when propagating through the double-Amici
prism. We used CDGM glasses H-ZF6 (refractive index n = 1.7552, Abbe number vd = 24.5474) and
H-ZK50 (refractive index n = 1.607, Abbe number vd = 56.6572) to build the high and low dispersion
wedge prisms. Figure 5.11(c) shows the manufactured double-Amici prism and its mechanical holder.

Figure 5.12 shows the Zemax spot diagram of the relay lens/double-Amici prism structure at 0 field
angle. In this spot diagram, we can see that due to the dispersion performance of the double-Amici
prism, the wavelength components of 450 nm and 650 nm are spatially separated by about 220 µm. This
spatial separation spans over approximately 22 CCD pixels and thus results in 22 spectral channels in
the reconstructed image cubes. The number of spectral channels in the reconstructed image cubes can
be increased or reduced by moving the prism closer to or further away from the relay lens [56]. In our
experimental setup, we usually align the optics to ensure the acquisition of 24 spectral images in the
reconstructed image cubes. From Fig. 5.12, we can also observe a non-linear dispersion performance of
the double- Amici prism. We observe that the spatial separation between the wavelength components of
450 nm and 500 nm (50 nm difference) is 88 µm, whereas the spatial separation between the wavelength
components of 600 nm and 650 nm (also 50 nm difference) is only about 30 µm. We can see that this
prism is more dispersive in the short wavelength region of the visible spectrum than in the long wavelength
region. This non-linear dispersion performance was also discussed in [51].

We experimentally realized the DMD-SSI in our lab, which is shown in Fig. 5.13. The DMD used in
this setup is a TI Discovery 1100 series DMD product. The imaging lens is a Leica COLORPLAN-P2
projector lens, which has a good control over chromatic aberrations. The focal length of the imaging
lens is 90 mm and its f-number is 2.5. The CCD camera is an AVT Stingray F031B camera, which has
a pixel dimension of 540 × 640 and a pixel pitch of 9.9 µm. In this experimental setup, we use a 2 × 2
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Figure 5.12: Spot diagram of the relay lens/double-Amici prism structure at 0 field angle.

Figure 5.13: Experimental setup of the DMD-SSI system.

DMD super-pixel (27.36× 27.36µm2) to represent one pixel in the CS measurement pattern, and image
one DMD super-pixel onto a 3× 3 CCD super-pixel (29.7× 29.7µm2).

5.5 Calibration of the CASSI System

The simulation result presented in Section 5.3 demonstrated that the TwIST algorithm can effectively
reconstruct the original image cube using CS measurement results generated from an ideal CASSI sys-
tem. However, in experimental settings, practical issues such as noise contaminations and/or optical
aberrations make the collection of ideal CS measurement results impossible. In the following example,
we present a simple case demonstrating that external noise poses negative impact on the image recon-
struction quality. We also introduce a simple calibration process can be used to alleviate that negative
impact.
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Figure 5.14: (a) Partial view of an ideal CS measurement pattern (32 × 32 pixels). (b) A noise-
contaminated CS measurement pattern generated by adding white noise to the pattern shown in Fig.
5.14(a).

Figure 5.14(a) shows a partial view (32 × 32 pixels) of an ideal CS measurement pattern, which is
a 256 × 256 binary random pattern. The white pixels in this pattern represent the binary value 1, and
the black pixels represent the binary value 0. In Fig. 5.14(b), we added white noise to the ideal CS
measurement pattern, which models the noise happened on the DMD mirror plane due to issues like dust
scattering and deformations/vibrations of mirror pixels happened in their tilting/resetting process. The
average intensity of the white noise considered in this simulation is 0.53, and its standard deviation is
0.12. We used the ideal and the noise-contaminated patterns to generate CS measurement results, which
were then input into the TwIST algorithm for reconstructing the original image cube. For the sake of
paper space, we do not show the entire reconstructed image cubes. Instead, in top row images of Fig.
5.15, we show RGB images of the original (Fig. 5.15(a)) and the reconstructed image cubes (Figs. 5.15(b)
and (c)). In bottom row images of Fig. 5.15, we show optical images of the original (Fig. 5.15(d)) and
the reconstructed image cubes (Figs. 5.15(e) and (f)).

Comparing Fig. 5.15(b) with Fig. 5.15 (c) and comparing Fig. 5.15(e) with Fig. 5.15(f), we can
see that the quality of the reconstructed RGB and optical images is apparently affected by the noise
considered in the CS measurement pattern, in the sense that Figs. 5.15(c) and (f) look more blurry and
noisy than Figs. 5.15(b) and (e). The PSNR value of the optical image reconstructed using the noisy
CS measurement pattern is 15.69 dB, which is 9.6% lower than the PSNR value of the optical image
reconstructed using the ideal CS measurement pattern (17.36 dB). To mitigate the quality degradation
caused by noise contaminations, when solving the image reconstruction problem, it is helpful to consider
the same amount of noise that happened in the CS measurement process in the system transfer matrix H.

In Fig. 5.16(a), we show the RGB image reconstructed when the same amount of noise that happened
in the CS measurement process was considered in the system transfer matrix. Compared to Fig. 5.16(b),
which is the RGB image reconstructed without considering the noise in the system transfer matrix , we can
see that Fig. 5.16(a) looks less noisy and the color contrast between the red and green tomatoes is more
visually apparent. Figure 5.16(c) shows the optical image reconstructed when the noise is considered in
the system transfer matrix and Fig. 5.16(d) shows the optical image reconstructed with the ideal system
transfer matrix. We calculated the PSNR values of those reconstructed optical images and noted that, by
considering the noise in the system transfer matrix, the PSNR value of the reconstructed optical image
was improved from 15.69 dB (Fig. 5.16(d)) to 17.07 dB (Fig. 5.16(c)).

In the above simulation, we only considered one kind of noise contaminations in the DMD-SSI system.
In experimental settings, other kinds of noise contaminations, such as mechanical vibrations, stray light
in the lab environment, and electronic noise of the camera, cause additional errors to the CS measurement
results. To fully account for those non-ideal factors, a calibration process was proposed in [51,53], which
involves the acquisition of a series of monochromic images for the CS measurement pattern. Each of
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Figure 5.15: (a) RGB image of the original image cube. (b) RGB image of the reconstructed image cube
when the ideal random pattern was used to implement the CS measurement process. (c) RGB image
of the reconstructed image cube when the noise-contaminated CS measurement pattern was used. (d)
Optical image of the original image cube. (e) Optical image of the reconstructed image cube when the
ideal CS measurement pattern was used. (f) Optical image of the reconstructed image cube when the
noise-contaminated CS measurement pattern was used.

the monochromic images contains not only the spatial information of the implemented CS measurement
pattern, but also all the wavelength-dependent noises and aberrations. The acquired monochromic images
are then used to build a practical system transfer matrix for the experimental setup, such that all the
noises and aberrations present in the experiment setup can be considered in the image reconstruction
process. Figure 5.17 shows the calibration setup for our DMD-SSI system, which is composed of a wide-
band Xenon lamp (Newport, stock number: 66477) and a visible monochromator (Oriel, model number:
77200).

In the calibration process, monochromic emissions generated from the monochromator are used to
illuminate the DMD mirror plane and corresponding monochromic images of the implemented DMD
pattern can be captured by the CCD camera installed in the DMD-SSI system. Figure 5.18(a) and (b)
show an ideal CS measurement pattern and one of its monochromic images captured at the wavelength
of 612 nm. In this figure, we can see that the monochromic image is contaminated with random noises
and optical blurs. Also, the intensity contrast between the on and off pixels is lower in the monochromic
image than in the ideal CS measurement pattern. All of those non-ideal factors will be considered in the
image reconstruction process by the practical system transfer matrix.

In the calibration process, we capture monochromic images every 1 nm from 450 nm to 685 nm.
Therefore, a total number of 236 monochromic images are captured. Those monochromic images are
spatially separated, due to the dispersion performance of the prism. Not all of those 236 monochromic
images are used to build the transfer matrix for the experimental setup. This is because the CCD camera
cannot accurately resolve spatial separations smaller than 1 CCD pixel. Therefore, monochromic images
that have spatial separations smaller than 1 CCD pixel are considered as identical in this calibration
process. From those 236 monochromic images captured in the calibration process, we found 24 non-
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Figure 5.16: RGB and optical images reconstructed using the noise-contaminated CS measurement pat-
tern. In (a) and (c), the same amount of noise happened in the CS measurement process was considered
in the system transfer matrix. In (b) and (d), the noise was not considered in the system transfer matrix.

Figure 5.17: Calibration setup for the DMD-SSI system.

identical images and used them to build the practical system transfer matrix. We say those 24 non-
identical monochromic images form a calibration cube for the experimental setup. Figure 5.19(a) shows
the wavelength information of the 24 non-identical monochromic images. Figure 5.19(b) shows the first
and the last monochromic images included in the calibration cube, which were captured at the wavelengths
of 453 nm and 671 nm, respectively. Fake colors are added to those two monochromic images to enhance
their visual perception. We can see that those two monochromic images are spatially separated by 23
CCD pixels in the horizontal direction of the CCD camera. Please note that the calibration process is
only useful to one experimental setup. If the optical/mechanical architecture of the DMD-SSI system is
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Figure 5.18: (a) An ideal CS measurement pattern (128 × 128). (b) A monochromic image of the CS
measurement pattern captured by the DMD-SSI system at 612 nm.

modified, such as a new lens is installed or the position of the prism is moved, a new calibration process
needs to be implemented for the modified setup.

Figure 5.19: (a) Wavelength information of non-identical monochromic images captured in the calibration
process. (b) Monochromic images captured at 453 nm (red pattern) and 671 nm (blue pattern).

5.6 Experimental Results

Figure 5.20 shows an image reconstruction result obtained from the experimental DMD-SSI setup. In
this case, the binary random pattern shown in Fig. 5.18 was used as the CS measurement pattern. Figure
5.20(a) shows a CCD image of the imaging target, which is composed of a green and a red toy car. Figure
5.20(b) shows the CS measurement result generated from the DMD-SSI setup. Figure 5.20(c) shows the
reconstructed image cube of the imaging target. We can see that the green car was reconstructed with
strong intensities in green spectral channels (529 nm to 580 nm), whereas the red car was reconstructed
with strong intensities in red spectral channels (605 nm to 636 nm).

In Fig. 5.21, we show another set of image reconstruction result which was generated with a different
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Figure 5.20: (a) CCD image of the imaging target. (b) CS measurement result acquired by the DMD-SSI
system for the imaging target. (c) Reconstructed spatial/spectral image cube (fake colors were added to
enhance the visual perception of those spectral images).

imaging target. Also, a different CS measurement pattern was used to realize the CS measurement
process. A new calibration process was implemented prior to this image reconstruction experiment.
Figure 5.21(a) shows a monochromic image of the CS measurement pattern used in this experiment,
which was captured at the wavelength of 587 nm. Figure 5.21(b) shows a CCD image of the imaging
target used in this experiment, which is composed of three colorful plastic stripes. Figure 5.21(c) shows
the CS measurement result captured from the experimental DMD-SSI setup. Figure 5.21(d) shows the
reconstructed spatial/spectral image cube of the imaging target. In this result, we can see that the blue
color stripe was reconstructed with strong intensities in spectral channels from 460 nm to 498 nm, whereas
the green color stripe was reconstructed with strong intensities in spectral channels from 517 nm to 576
nm and the red color stripe was reconstructed with strong intensities in spectral channels from 601 nm
to 663 nm. This reconstruction result is in accordance with our visual perception to the blue, green, and
red color stripes in the imaging target.

5.7 Multi-shot CS Measurements

Multi-Shot CASSI (MS-CASSI) systems were developed to enhance the quality of image cubes recon-
structed by conventional Single-Shot CASSI (SS-CASSI) systems. In MS-CASSI systems, the photomask
is mounted on a piezo stage. By horizontally and/or vertically shifting the photomask using the stage,
different regions of the random pattern coated on the photomask can be used to impose intensity modula-
tions on the original image cube. MS-CS measurement processes can be realized by using multiple shifts
of the piezo-stage. In [52], the authors demonstrated the quality enhancement brought by the MS-CASSI
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Figure 5.21: (a) Monochromic image of the CS measurement pattern captured at 587 nm. (b) CCD
image of the imaging target. (c) CS measurement result. (d) Reconstructed spatial/spectral image cube
of the imaging target (fake colors were added to enhance the visual perception).

system. DMD-SSI systems can also be used to realize MS-CS measurement processes [55]. Compared to
piezo stage-based MS-CASSI systems, DMD-SSI systems realize MS-CS measurement processes without
mechanical motions, and thus, they are free from registration errors happened in the motion process.
More importantly, DMD-SSI systems has a much higher flexibility in implementing CS measurement
patterns, in the sense that in addition to the shifted random patterns that the piezo stage-based system
can only provide, DMD-SSI systems can use patterns of independent designs to realize MS-CS measure-
ment processes.

We implemented MS-CS measurement processes with our DMD-SSI setup. Figure 5.22(a) shows the
imaging target used in this experiment, which is a red chili pepper with a green stem. Figure 5.22(b) shows
one of the CS measurement patterns used in this experiment. Figure 5.22(c) shows the CS measurement
result generated when the CS measurement pattern shown in Fig. 5.22(b) was implemented with the
DMD. Top row images in Fig. 5.23 show spectral images (channels 13-24 of the reconstructed image
cube) reconstructed with a Single-Shot CS (SS-CS) measurement process. Center row images in Fig.
5.23 show spectral images reconstructed with a 6-shot MS-CS measurement process implemented with
shifted random patterns and bottom row images show spectral images reconstructed with a 6-shot MS-CS
measurement process implemented with independent random patterns.

In this figure, we can see that both the SS-CS and the MS-CS measurement processes can result in
meaningful image reconstruction results. We can see that the green stem portion of the pepper target
was reconstructed with strong intensities in green spectral channels, which are from 538 nm to 581 nm
(channels 14-18), and the red body portion of the pepper target was reconstructed with strong intensities
in red spectral channels, which are from 606 nm to 670 nm (channels 20-24). However, we noted that
the spectral images reconstructed with MS-CS measurement processes have much better quality than the

95



Figure 5.22: (a) CCD image of the imaging target. (b) One of the CS measurement patterns used in the
MS-CS measurement experiment. (c) CS measurement result generated from our experimental setup,
when the pattern shown in Fig. 5.22(b) was implemented with the DMD.

Figure 5.23: Top row images: spectral images (channels 13-24 in the reconstructed image cube) recon-
structed with a SS-CS measurement process. Center row images: spectral images reconstructed with a
6-shot MS-CS measurement process, implemented with shifted random patterns. Bottom row images:
spectral images reconstructed with a 6-shot MS-CS measurement process, implemented with independent
random patterns.

spectral images reconstructed with the SS-CS measurement process, in the sense that they look less noisy
and blurry. Also, in spectral images reconstructed with MS-CS measurement processes, the intensity
contrast between the body/stem portions of the pepper target and the dark background is more visually
apparent.

In Fig. 5.24, we show three colorful images generated by using channel 16 and channel 21 in the
reconstructed image cubes as the green and red color components in the RGB data format. We can see
that those colorful images look similar to the CCD image of the imaging target shown in Fig. 5.22(a).
Also in this figure, we can see that colorful images reconstructed with MS-CS measurement processes
look less noisy than the one reconstructed with the SS-CS measurement process. They also have a higher
color contrast between the stem and the body portions of the pepper target. We also evaluated the
intensity variations of the reconstructed image cubes at point-1 and point-2 on the imaging scene, which
are located on the body and stem portions of the pepper target, respectively. The locations of point-1 and
point-2 are demonstrated in Fig. 5.22(a). Those intensity variations can be considered as reconstructed
spectral curves on those two pixel locations. We also used a commercial spectrometer (Avantes, model
number: AvaSpec-1024) to generate reference spectral curves at those two locations. Figure 5.25 shows
the reconstructed (dotted lines) and the reference spectral curves (solid lines).
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Figure 5.24: Colorful images synthesized using spectral channels 16 and 21 in the reconstructed image
cubes as the green and red color components in the RGB data format. (a) Colorful image generated
with the SS-CS measurement process. (b) Colorful image generated with a 6-shot MS-CS measurement
process, implemented with shifted random patterns. (c) Colorful image generated with a 6-shot MS-CS
measurement process, implemented with independent random patterns.

Figure 5.25: (a) Reconstructed and reference spectral curves measured at point-1 on the pepper target.
(b) Reconstructed and reference spectral curves measured at point-2 on the pepper target.

In Fig. 5.25, we can see that the reference spectral curves (solid curves) have an intensity peak at
the spectral channel of 621 nm for point-1 and an intensity peak at the spectral channel of 548 nm for
point-2. We call those two spectral channels the fingerprint spectral channels of the pepper target in the
body and stem portions. In spectral curves reconstructed with the SS-CS measurement process (dotted
line in dark yellow color), we can see the intensity peaks miss the ones in the reference spectral curves,
which implies the reconstruction quality is not ideal. In this case, the MSE values of the deviations
from the reconstructed spectral curves to the reference curves are 3.3% at point-1 and 2.9% at point-2,
respectively. For spectral curves reconstructed with MS-CS measurement processes (dotted curves in blue
and pink colors), we can see that their intensity peaks match the ones in the reference spectral curves.
Also, MSEs of the deviations from the reconstructed spectral curves to the reference curves dropped to
1.2% and 1.4% for point-1, and to 2.4% and 0.4% for point-2, when shifted and independent random
patterns were used to implement the MS-CS measurement processes, respectively.
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Chapter 6

Communications System

The objective of this task is to develop a robust, low-delay, low-complexity, communication system for
the transmission of multispectral measurements. In order to achieve robustness against changes in the
channel quality, and to reduce the system complexity with respect to standard communications systems,
we have developed a discrete-time, analog-processing system that completely skips the digital domain and
achieves a performance close to the theoretical limits. The key idea at the encoder site is to perform simple
non-linear transformations on the available measurements. These transformations, denoted as M() and
T() in Fig. 1, depend on the source/channel statistics and on the desired transmission rate. The resulting
values are directly transmitted though the communications channel using very simple PAM signaling. ML
decoding at the receiver is straightforward, and leads to excellent performance. The research developed
in this project has focused on the development of the appropriate non-linear mappings, and on the
implementation of testbeds to study the performance of the proposed system in practical scenarios.

Figure 6.1: Discrete-time continuous-amplitude communications system

6.1 Development of non-linear mappings

A key piece of our work is the development of low-complex non-linear mappings that match the statistics
of the measurements to the channel, leading to performance close to the theoretical limits. We denote the
number of measurements to be transmitted as N, and K denotes the total number of allowed channel uses.
Then, the theoretical limit establishing the minimum amount of distortion (or equivalently, the maximum
Signal to Distortion Ratio, SDR) that can be achieved for a certain channel quality is a function of the
bandwidth reduction factor N/K and the Rate Distortion Function, R(D). This theoretical limit holds
for any communication system, and our goal is to get as close as possible to the limit with the lowest
possible complexity.

We started our research with the development of non-linear mappings for the case of independent and
identically distributed measurements transmitted through RF wireless channels. We also implemented
quasi-optimal decoding algorithms with very reduced complexity, close to that of Maximum Likelihood,
ML. Next, we investigated mappings that exploit the correlation existing between the measurements
to achieve an improved performance. Finally, we also developed mappings for the case in which the
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measurements are transmitted optically, which presents new research problems as the characteristics of
optical wireless channels, and thus the mapping designs, are very different from that of RF channels.
Through the process, we also discovered a technique to simplify even more the encoding process when
the bandwidth reduction factor is 2, decreasing the computational complexity of the system by an order
of magnitude. Interestingly, the resulting performance in this case is very similar to that obtained with
the original mappings.

6.2 Testbeds implementation

In addition to the theoretical work, we have implemented two testbeds to study the performance of the
proposed system in practical scenarios. The first testbed, which will be described in more detail in the
sequel, uses Software Defined Radios (SDRs) for the electromagnetic transmission of the measurements
through wireless channels, while the second testbed performs wireless optical communications. The RF
testbed is composed of two Universal Software Radio Peripherals (USRP2) (see Fig. 2). The transmit and
receive antennas are separated 2 meters, and thus the wireless channel is a quasi-static fading channel,
which for the transmission of each frame behaves as an Additive White Gaussian Noise (AWGN) channel.
The system has a frequency of operation in the ISM band, fc=2.41 GHz, and the baseband sampling
frequency is fs=195 samples/s. We apply a squared root raised cosine pulse-shaping filter with a roll-off
factor of 20% and the symbol period is Ts=20 samples/s. As explained before, we used the very simple
PAM modulation and transmit data just using the in-phase component.

(a) Transmitter (b) Receiver

Figure 6.2: RF testbed

In order to perform frequency synchronization, the testbed used a global GPS Disciplined Oscillator
shared between the transmitter and the receiver. The main goal of this procedure is to align the frequency
of the carrier at the receiver with the frequency of the carrier at the transmitter. The result is a
coarse-grained frequency synchronization that avoids the continue rotation of the received symbols at
the receiver. Although this technique solved in general the problem of frequency mismatch, there was a
remaining impairment related to a constant carrier phase error. We addressed this impairment using SISO
frequency estimator algorithms (Kays estimator) that leads to good results in the testbed implementation.
In terms of frame synchronization, we divide the data in frames of fixed size (10,000 symbols), and at the
beginning of each frame we add a known pilot sequence of 101 symbols generated by a BPSK modulation.
At the beginning of each received frame, we perform a cross correlation procedure between the received
frame and the expected pilot sequence in order to find the start of the sequence.

6.3 Results

Our results focus on the transmission of the multispectral measurements through the RF testbed. As
explained before, the development of appropriate mappings depends on the statistics of the measurements,
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(a) Original measurements (b) Their distribution

Figure 6.3: Notice the good match between the measurements and the Gaussian distribution

which, as shown in Fig. 3, can be accurately approximated by a Gaussian distribution. We consider two
bandwidth reduction factors: N/K=1, or direct transmission, and N/K=2.

In the case of N/K=1, it is well known that direct transmission through an AWGN channel is optimal
provided that the measurements are iid and Gaussian. Therefore, since the wireless channel can be
approximated as AWGN, the performance of the proposed system should approach the theoretical limit
for Gaussian sources, which can be easily calculated using information theoretical arguments. Indeed,
Fig. 4(left) shows that simulation results with MMSE decoding perfectly fit the theoretical limit, while,
as expected, ML decoding results in performance lost for low signal to noise ratios in the channel (CSNR).
Notice the excellent match between simulation results and the testbed evaluation. Similar results can be
seen in Fig. 4(right) for the case in which the bandwidth reduction factor is N/K=2.

(a) N/K = 1 (b) N/K = 2

Figure 6.4: Theoretical limit and performance of the proposed system for the transmissiosn of the original
measurements through an RF wireless channel. The system is evaluated through simulations and through
the testbed.
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